I'm using the Tesla m1060 for GPGPU computation. It has the following specs:
# of Tesla GPUs 1
# of Streaming Processor Cores (XXX per processor) 240
Memory Interface (512-bit per GPU) 512-bit
When I use OpenCL, I can display the following board information:
available platform OpenCL 1.1 CUDA 6.5.14
device Tesla M1060 type:CL_DEVICE_TYPE_GPU
max compute units:30
max work item dimensions:3
max work item sizes (dim:0):512
max work item sizes (dim:1):512
max work item sizes (dim:2):64
global mem size(bytes):4294770688 local mem size:16383
How can I relate the GPU card informations to the OpenCL memory informations ?
For example:
- What does "Memory Interace" means ? Is it linked the a Work Item ?
- How can I relate the "240 cores" of the GPU to Work Groups/Items ?
- How can I map the work-groups to it (what would be the number of Work groups to use) ?
Thanks
EDIT:
After the following answers, there is a thing that is still unclear to me:
The CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE
value is 32 for the kernel I use.
However, my device has a CL_DEVICE_MAX_COMPUTE_UNITS
value of 30.
In the OpenCL 1.1 Api, it is written (p. 15):
Compute Unit: An OpenCL device has one or more compute units. A work-group executes on a single compute unit
It seems that either something is incoherent here, or that I didn't fully understand the difference between Work-Groups and Compute Units.
As previously stated, when I set the number of Work Groups to 32, the programs fails with the following error:
Entry function uses too much shared data (0x4020 bytes, 0x4000 max).
The value 16 works.
Addendum
Here is my Kernel signature:
// enable double precision (not enabled by default)
#ifdef cl_khr_fp64
#pragma OPENCL EXTENSION cl_khr_fp64 : enable
#else
#error "IEEE-754 double precision not supported by OpenCL implementation."
#endif
#define BLOCK_SIZE 16 // --> this is what defines the WG size to me
__kernel __attribute__((reqd_work_group_size(BLOCK_SIZE, BLOCK_SIZE, 1)))
void mmult(__global double * A, __global double * B, __global double * C, const unsigned int q)
{
__local double A_sub[BLOCK_SIZE][BLOCK_SIZE];
__local double B_sub[BLOCK_SIZE][BLOCK_SIZE];
// stuff that does matrix multiplication with __local
}
In the host code part:
#define BLOCK_SIZE 16
...
const size_t local_work_size[2] = {BLOCK_SIZE, BLOCK_SIZE};
...
status = clEnqueueNDRangeKernel(command_queue, kernel, 2, NULL, global_work_size, local_work_size, 0, NULL, NULL);
The memory interface doesn't mean anything to an opencl application. It is the number of bits the memory controller has for reading/writing to the memory (the ddr5 part in modern gpus). The formula for maximum global memory speed is approximately: pipelineWidth * memoryClockSpeed, but since opencl is meant to be cross-platform, you won't really need to know this value unless you are trying to figure out an upper bound for memory performance. Knowing about the 512-bit interface is somewhat useful when you're dealing with memory coalescing. wiki: Coalescing (computer science)
The max work item sizes have to do with 1) how the hardware schedules computations, and 2) the amount of low-level memory on the device -- eg. private memory and local memory.
The 240 figure doesn't matter to opencl very much either. You can determine that each of the 30 compute units is made up of 8 streaming processor cores for this gpu architecture (because 240/30 = 8). If you query for CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE, it will very likey be a multiple of 8 for this device. see: clGetKernelWorkGroupInfo
I have answered a similar questions about work group sizing. see here, and here
Ultimately, you need to tune your application and kernels based on your own bench-marking results. I find it worth the time to write many tests with various work group sizes and eventually hard-code the optimal size.