I am trying to come up with an efficient way to characterize two narrowband tones separated by about 900kHz (one at around 100kHZ and one at around 1MHz once translated to baseband). They don't move much in freq over time but may have amplitude variations we want to monitor.
Each tone is roughly about 100Hz wide and we are required to characterize these two beasts over long periods of time down to a resolution of about 0.1 Hz. The samples are coming in at over 2M Samples/sec (TBD) to adequately acquire the highest tone.
I'm trying to avoid (if possible) doing brute force >2MSample FFTs on the data once a second to extract frequency domain data. Is there an efficient approach? Something akin to performing two (much) smaller FFTs around the bands of interest? Ive looked at Goertzel and chirp z methods but I am not certain it helps save processing.
There is, it's called Goertzel, and is kind of the FFT for single bins, and you already have looked at it. It will save you CPU time.
Anyway, there's no reason to do a 2M-point FFT; first of all, you only want a resolution of about 1/20 the sampling rate, hence, a 20-point FFT would totally do, and should be pretty doable for your CPU at these low rates; since you don't seem to care about phase of your tones, FFT->complex_to_mag.
However, there's one thing that you should always do: look at your signal of interest, and decimate down to the rate that fits exactly that. Since GNU Radio's filters are implemented cleverly, the filter itself will only run at the decimated rate, and you can spend the CPU cycles saved on a better filter.
Because a direct decimation from 2MHz to 100Hz (decimation: 20000) will really have an ugly filter length, you should do this multi-rated:
I'd try first decimating by 100, and then in a second step by 100, leaving you with 200Hz observable spectrum. The xlating fir filter blocks will let you use a simple low-pass filter (use the "Low-Pass Filter Taps" block to define a variable that contains such taps) as a band-selector.