I am using YoloV7 to run a training session for custom object detection. My environment is as follows:
OS: Ubuntu 22.04
Python : 3.10
Torch Version : '2.1.0+cu121'
I am using AWS EC2 - g5.2xlarge
and g5.12xlarge
instances for my training.
python3 train.py --batch 4 --data ~/yolo4iris/data.yaml --weights yolov7_training.pt
When I am using a g5.2xlarge
instances which as 1gpu
the training session runs without any issue. I am able to complete the training session. Since, I have more than 30k images I am trying to use g5.12xlarge
instance that provides 4GPUs
.
python -m torch.distributed.run --nproc_per_node 4 train.py --batch 64 --data ~/yolo4iris/data.yaml --weights yolov7_training.pt
I am using the above torch.distributed.run extension as given in Yolov7 documentation page. However, it gives me the following error.
WARNING:__main__:
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
*****************************************
YOLOR v0.1-126-g84932d7 torch 2.1.0+cu121 CUDA:0 (NVIDIA A10G, 22546.9375MB)
CUDA:1 (NVIDIA A10G, 22546.9375MB)
CUDA:2 (NVIDIA A10G, 22546.9375MB)
CUDA:3 (NVIDIA A10G, 22546.9375MB)
Namespace(weights='yolov7_training.pt', cfg='', data='/home/ubuntu/yolo4iris/data.yaml', hyp='data/hyp.scratch.p5.yaml', epochs=300, batch_size=64, img_size=[640, 640], rect=False, resume=False, nosave=False, notest=False, noautoanchor=False, evolve=False, bucket='', cache_images=False, image_weights=False, device='', multi_scale=False, single_cls=False, adam=False, sync_bn=False, local_rank=-1, workers=8, project='runs/train', entity=None, name='exp', exist_ok=False, quad=False, linear_lr=False, label_smoothing=0.0, upload_dataset=False, bbox_interval=-1, save_period=-1, artifact_alias='latest', freeze=[0], v5_metric=False, world_size=4, global_rank=0, save_dir='runs/train/exp25', total_batch_size=64)
tensorboard: Start with 'tensorboard --logdir runs/train', view at http://localhost:6006/
Traceback (most recent call last):
File "/home/ubuntu/yolov7/train.py", line 616, in <module>
hyperparameters: lr0=0.01, lrf=0.1, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.3, cls_pw=1.0, obj=0.7, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.2, scale=0.9, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.15, copy_paste=0.0, paste_in=0.15, loss_ota=1
train(hyp, opt, device, tb_writer)
File "/home/ubuntu/yolov7/train.py", line 85, in train
with torch_distributed_zero_first(rank):
File "/usr/lib/python3.10/contextlib.py", line 135, in __enter__
return next(self.gen)
File "/home/ubuntu/yolov7/utils/torch_utils.py", line 33, in torch_distributed_zero_first
torch.distributed.barrier()
File "/home/ubuntu/yolo/lib/python3.10/site-packages/torch/distributed/c10d_logger.py", line 47, in wrapper
return func(*args, **kwargs)
File "/home/ubuntu/yolo/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py", line 3685, in barrier
opts.device = _get_pg_default_device(group)
File "/home/ubuntu/yolo/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py", line 593, in _get_pg_default_device
group = group or _get_default_group()
File "/home/ubuntu/yolo/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py", line 940, in _get_default_group
raise RuntimeError(
RuntimeError: Default process group has not been initialized, please make sure to call init_process_group.
Traceback (most recent call last):
File "/home/ubuntu/yolov7/train.py", line 616, in <module>
train(hyp, opt, device, tb_writer)
File "/home/ubuntu/yolov7/train.py", line 85, in train
with torch_distributed_zero_first(rank):
File "/usr/lib/python3.10/contextlib.py", line 135, in __enter__
return next(self.gen)
File "/home/ubuntu/yolov7/utils/torch_utils.py", line 33, in torch_distributed_zero_first
torch.distributed.barrier()
File "/home/ubuntu/yolo/lib/python3.10/site-packages/torch/distributed/c10d_logger.py", line 47, in wrapper
return func(*args, **kwargs)
File "/home/ubuntu/yolo/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py", line 3685, in barrier
opts.device = _get_pg_default_device(group)
File "/home/ubuntu/yolo/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py", line 593, in _get_pg_default_device
group = group or _get_default_group()
File "/home/ubuntu/yolo/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py", line 940, in _get_default_group
raise RuntimeError(
RuntimeError: Default process group has not been initialized, please make sure to call init_process_group.
Traceback (most recent call last):
File "/home/ubuntu/yolov7/train.py", line 616, in <module>
train(hyp, opt, device, tb_writer)
File "/home/ubuntu/yolov7/train.py", line 85, in train
with torch_distributed_zero_first(rank):
File "/usr/lib/python3.10/contextlib.py", line 135, in __enter__
return next(self.gen)
File "/home/ubuntu/yolov7/utils/torch_utils.py", line 33, in torch_distributed_zero_first
torch.distributed.barrier()
File "/home/ubuntu/yolo/lib/python3.10/site-packages/torch/distributed/c10d_logger.py", line 47, in wrapper
return func(*args, **kwargs)
File "/home/ubuntu/yolo/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py", line 3685, in barrier
opts.device = _get_pg_default_device(group)
File "/home/ubuntu/yolo/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py", line 593, in _get_pg_default_device
group = group or _get_default_group()
File "/home/ubuntu/yolo/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py", line 940, in _get_default_group
raise RuntimeError(
RuntimeError: Default process group has not been initialized, please make sure to call init_process_group.
wandb: Install Weights & Biases for YOLOR logging with 'pip install wandb' (recommended)
Traceback (most recent call last):
File "/home/ubuntu/yolov7/train.py", line 616, in <module>
train(hyp, opt, device, tb_writer)
File "/home/ubuntu/yolov7/train.py", line 85, in train
with torch_distributed_zero_first(rank):
File "/usr/lib/python3.10/contextlib.py", line 142, in __exit__
next(self.gen)
File "/home/ubuntu/yolov7/utils/torch_utils.py", line 36, in torch_distributed_zero_first
torch.distributed.barrier()
File "/home/ubuntu/yolo/lib/python3.10/site-packages/torch/distributed/c10d_logger.py", line 47, in wrapper
return func(*args, **kwargs)
File "/home/ubuntu/yolo/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py", line 3685, in barrier
opts.device = _get_pg_default_device(group)
File "/home/ubuntu/yolo/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py", line 593, in _get_pg_default_device
group = group or _get_default_group()
File "/home/ubuntu/yolo/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py", line 940, in _get_default_group
raise RuntimeError(
RuntimeError: Default process group has not been initialized, please make sure to call init_process_group.
[2023-10-29 05:49:46,489] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 4567 closing signal SIGTERM
[2023-10-29 05:49:46,903] torch.distributed.elastic.multiprocessing.api: [ERROR] failed (exitcode: 1) local_rank: 1 (pid: 4568) of binary: /home/ubuntu/yolo/bin/python
Traceback (most recent call last):
File "/usr/lib/python3.10/runpy.py", line 196, in _run_module_as_main
return _run_code(code, main_globals, None,
File "/usr/lib/python3.10/runpy.py", line 86, in _run_code
exec(code, run_globals)
File "/home/ubuntu/yolo/lib/python3.10/site-packages/torch/distributed/run.py", line 810, in <module>
main()
File "/home/ubuntu/yolo/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 346, in wrapper
return f(*args, **kwargs)
File "/home/ubuntu/yolo/lib/python3.10/site-packages/torch/distributed/run.py", line 806, in main
run(args)
File "/home/ubuntu/yolo/lib/python3.10/site-packages/torch/distributed/run.py", line 797, in run
elastic_launch(
File "/home/ubuntu/yolo/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 134, in __call__
return launch_agent(self._config, self._entrypoint, list(args))
File "/home/ubuntu/yolo/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 264, in launch_agent
raise ChildFailedError(
torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
============================================================
train.py FAILED
------------------------------------------------------------
Failures:
[1]:
time : 2023-10-29_05:49:46
host : ip-172-31-1-246.ap-south-1.compute.internal
rank : 2 (local_rank: 2)
exitcode : 1 (pid: 4569)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
[2]:
time : 2023-10-29_05:49:46
host : ip-172-31-1-246.ap-south-1.compute.internal
rank : 3 (local_rank: 3)
exitcode : 1 (pid: 4570)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
------------------------------------------------------------
Root Cause (first observed failure):
[0]:
time : 2023-10-29_05:49:46
host : ip-172-31-1-246.ap-south-1.compute.internal
rank : 1 (local_rank: 1)
exitcode : 1 (pid: 4568)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
While this sounds familiar as there are other questions with similar errors, the problem I am facing is none of the solutions help me resolve this issue. I tried the following:
- Setting OMP_NUM_THREADS variable in environment
- Changed local-rank to local_rank
- Changed my dataset
- Reinstalled YoloV7
- Modified the batch size from 32 to various combinations upto 4.
- Changed the image size from 640 to 256 and lower
- Ran the training session with only 2000 images.
Many other iterations and variations, but nothing seem to work for me. How can I resolve these three problems:
1. Setting OMP_NUM_THREADS environment variable for each process to be 1 in default
2. RuntimeError: Default process group has not been initialized, please make sure to call init_process_group.
3. torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
Your multi-GPU command looks like it is missing the
master_port
setting, thats why you are getting the error:Should be similar to this: