I have a 11 columns x 13,470,621 rows pytable. The first column of the table contains a unique identifier to each row (this identifier is always only present once in the table).
This is how I select rows from the table at the moment:
my_annotations_table = h5r.root.annotations
# Loop through table and get rows that match gene identifiers (column labeled gene_id).
for record in my_annotations_table.where("(gene_id == b'gene_id_36624' ) | (gene_id == b'gene_id_14701' ) | (gene_id == b'gene_id_14702')"):
# Do something with the data.
Now this works fine with small datasets, but I will need to routinely perform queries in which I can have many thousand of unique identifiers to match for in the table's gene_id column. For these larger queries, the query string can quickly get very large and I get an exception:
File "/path/to/my/software/python/python-3.9.0/lib/python3.9/site-packages/tables/table.py", line 1189, in _required_expr_vars
cexpr = compile(expression, '<string>', 'eval')
RecursionError: maximum recursion depth exceeded during compilation
I've looked at this question (What is the PyTables counterpart of a SQL query "SELECT col2 FROM table WHERE col1 IN (val1, val2, val3...)"?), which is somehow similar to mine, but was not satisfactory.
I come from an R background where we often do these kinds of queries (i.e. my_data_frame[my_data_frame$gene_id %in% c("gene_id_1234", "gene_id_1235"),] and was wondering if there was comparable solution that I could use with pytables.
Thanks very much,
Okay, I managed to do some satisfactory improvements on this.
1st: optimize the table (with the help of the documentation - https://www.pytables.org/usersguide/optimization.html)
Create table. Make sure to specify the
expectedrows=<int>arg as it has the potential to increase the query speed.I also modified the input data so that the gene_id_12345 fields are simple integers (gene_id_12345 becomes 12345). Once the table is populated with its 13,470,621 entries (i.e. rows), I created a complete sorted index based on the gene_id column (
Column.create_csindex()) and sorted it.2nd - The table is optimized, but I still can't query thousands of gene_ids at a time. So I simply separated them in chunks of 31 gene_ids (yes 31 was the absolute maximum, 32 was too much apparently).
I did not perform benchmarks, but querying ~8000 gene_ids now takes approximately 10 seconds which is acceptable for my needs.