TypeError: loop of ufunc does not support argument 0 of type float which has no callable exp method
I keep getting this error. all libraries are imported correctly. I have changed the dummies variables to a float. what am I missing? i have posted the libraries i used as well as code
screenshot_code_part1
screensshot_code_part2
import pandas as pd
import numpy as np
# Library to split data
from sklearn.model_selection import train_test_split
# libaries to help with data visualization
import matplotlib.pyplot as plt
import seaborn as sns
# Removes the limit for the number of displayed columns
pd.set_option("display.max_columns", None)
# To build Logistic Regression model for prediction
import statsmodels.stats.api as sms
from statsmodels.stats.outliers_influence import variance_inflation_factor
import statsmodels.api as sm
from statsmodels.tools.tools import add_constant
from sklearn.linear_model import LogisticRegression
# To get diferent metric scores
from sklearn.metrics import (
f1_score,
accuracy_score,
recall_score,
precision_score,
confusion_matrix,
roc_auc_score,
precision_recall_curve,
roc_curve,
make_scorer
)
# Libraries to build decision tree classifier
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree
# To tune different models
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
from sklearn.datasets import make_classification
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
from sklearn.model_selection import train_test_split
def model_performance_classification_statsmodels(
model, predictors, target, threshold=0.5
):
"""
Function to compute different metrics to check classification model performance
model: classifier
predictors: independent variables
target: dependent variable
threshold: threshold for classifying the observation as class 1
"""
# checking which probabilities are greater than threshold
pred_temp = model.predict(predictors) > threshold
# rounding off the above values to get classes
pred = np.round(pred_temp)
acc = accuracy_score(target, pred) # to compute Accuracy
recall = recall_score(target, pred) # to compute Recall
precision = precision_score(target, pred) # to compute Precision
f1 = f1_score(target, pred) # to compute F1-score
# creating a dataframe of metrics
df_perf = pd.DataFrame(
{"Accuracy": acc, "Recall": recall, "Precision": precision, "F1": f1,},
index=[0],
)
return df_perf
def confusion_matrix_statsmodels(model, predictors, target, threshold=0.5):
"""
To plot the confusion_matrix with percentages
model: classifier
predictors: independent variables
target: dependent variable
threshold: threshold for classifying the observation as class 1
"""
y_pred = model.predict(predictors) > threshold
cm = confusion_matrix(target, y_pred)
labels = np.asarray(
[
["{0:0.0f}".format(item) + "\n{0:.2%}".format(item / cm.flatten().sum())]
for item in cm.flatten()
]
).reshape(2, 2)
plt.figure(figsize=(6, 4))
sns.heatmap(cm, annot=labels, fmt="")
plt.ylabel("True label")
plt.xlabel("Predicted label")