I'm training a network with MRI images and I wanted to use SSIM as loss function. Till now I was using MSE, and everything was working fine. But when I tried to use SSIM (tf.image.ssim), I get a bunch of these warining messages:
/usr/local/lib/python3.7/dist-packages/matplotlib/image.py:397: UserWarning: Warning: converting a masked element to nan.
dv = (np.float64(self.norm.vmax) -
/usr/local/lib/python3.7/dist-packages/matplotlib/image.py:398: UserWarning: Warning: converting a masked element to nan.
np.float64(self.norm.vmin))
/usr/local/lib/python3.7/dist-packages/matplotlib/image.py:405: UserWarning: Warning: converting a masked element to nan.
a_min = np.float64(newmin)
/usr/local/lib/python3.7/dist-packages/matplotlib/image.py:410: UserWarning: Warning: converting a masked element to nan.
a_max = np.float64(newmax)
/usr/local/lib/python3.7/dist-packages/matplotlib/colors.py:933: UserWarning: Warning: converting a masked element to nan.
dtype = np.min_scalar_type(value)
/usr/local/lib/python3.7/dist-packages/numpy/ma/core.py:713: UserWarning: Warning: converting a masked element to nan.
data = np.array(a, copy=False, subok=subok)
I code is running anyway but no figure is being produced. I am not sure what's happening here or where should I look. I am using tensorflow 2.4.0.
I am attaching a summary of my code my code here:
generator = Generator() #An u-net defined in tf.keras
gen_learningrate = 5e-4
generator_optimizer = tf.keras.optimizers.Adam(gen_learningrate, beta_1=0.9, beta_2=0.999, epsilon=1e-8)
# Generator loss
def generator_loss(gen_output, target):
# SSIM loss
loss = - tf.reduce_mean(tf.image.ssim(target, gen_output, 2))
return loss
@tf.function
def train_step(input_image, target, epoch):
with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
gen_output = generator(input_image, training=True)
loss = generator_loss(gen_output, target)
generator_gradients = gen_tape.gradient(loss, generator.trainable_variables)
generator_optimizer.apply_gradients(zip(generator_gradients,
generator.trainable_variables))
return loss
def fit(train_ds, epochs, test_ds):
for input_image, target in train_ds:
loss = train_step(input_image,target,epoch)
fit(train_dataset, EPOCHS, test_dataset)
I have explored a little bit and noticed most people using tf.image.ssim()
as loss function have used tf.train()
from tensorflow 1.0 or model.fit()
from tf.keras. I suspect the NaN value returned has something to do with GradientTape()
function but I'm not sure how.
In my experience this warning is typically related to attempting plotting a point with a coordinate at infinity. Of course you should really show us more code for us to help you effectively.