this is my code
colors = [(245,117,16), (117,245,16), (16,117,245)]
def prob_viz(res, actions, input_frame, colors):
output_frame = input_frame.copy()
for num, prob in enumerate(res):
cv2.rectangle(output_frame, (0,60+num*40), (int(prob*100), 90+num*40), colors[num], -1)
cv2.putText(output_frame, actions[num], (0, 85+num*40), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,255), 2, cv2.LINE_AA)
return output_frame
plt.figure(figsize=(18,18))
plt.imshow(prob_viz(res, actions, image, colors))
and this is the error I am getting
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
Cell In[76], line 10
8 return output_frame
9 plt.figure(figsize=(18,18))
---> 10 plt.imshow(prob_viz(res, actions, image, colors))
Cell In[76], line 5, in prob_viz(res, actions, input_frame, colors)
3 output_frame = input_frame.copy()
4 for num, prob in enumerate(res):
----> 5 cv2.rectangle(output_frame, (0,60+num*40), (int(prob*100), 90+num*40), colors[num], -1)
6 cv2.putText(output_frame, actions[num], (0, 85+num*40), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,255), 2, cv2.LINE_AA)
8 return output_frame
TypeError: only size-1 arrays can be converted to Python scalars
<Figure size 1800x1800 with 0 Axes>
I was expecting a display of output by using imshow. I have tried converting it into int and list(map(int) but nothing was working and I was not getting the output. What is wrong with my code ? please help me figure this out.
res =model.predict(x_test)
#res is the prediction results of the x_test data using the model i had trained and
actions = np.array(['hello', 'yes', 'no'])
#actions refers to a NumPy array that contains a list of strings for which I have collected training and testing data
image,results = mediapipe_detection(frame,holistic)
#image is a variable used to store the captured frame for training
input_frame is the image being provided to the function
I think, the problem is you are inputting an array instead of a single value. If that is the case, you need to change prob to a single value. The index will depend on how you have used it, but I am using zero for this example: