I have 200 Mil rows with 1K groups looking like this
Group X Y Z Q W
group1 0.054464866 0.002248819 0.299069804 0.763352879 0.395905106
group2 0.9986218 0.023649037 0.50762069 0.212225807 0.619571705
group1 0.839928517 0.290339179 0.050407454 0.75837838 0.495466007
group1 0.021003132 0.663366686 0.687928832 0.239132224 0.020848608
group1 0.393843426 0.006299292 0.141103438 0.858481036 0.715860852
group2 0.045960198 0.014858905 0.672267793 0.59750871 0.893646818
I want to run the same function (say linear regression of X on [X, Z, Q, W]) for each of the groups. I could have done Window.partition etc. but I have my own function. At the moment, I do the following:
df.select("Group").distinct.collect.toList.foreach{group =>
val dfGroup = df.filter(col("Group")===group
dfGroup.withColumn("res", myUdf(col("X"), col("Y"), col("Z"), col("Q"), col("W"))}
Wonder if there is a better way to do?
You have minimum two options depending what you prefer: DataFrame or Dataset.
DataFrame with UDAF
where
myUdafis UDAFHere you can find example how to implement UDAF: https://docs.databricks.com/spark/latest/spark-sql/udaf-scala.html
Dataset
You can use
groupByKeyandmapGroupstransformations from Dataset API:where
aggregatoris Scala function responsible for aggregating collection of objects.If you don't need aggregating you can just map
valuesusingmaptransformation, example: