Problems with replicating an old paper

34 views Asked by At

I was trying to replicate the essay "Human-level control through deep reinforcement learning"(https://www.nature.com/articles/nature14236), but the code it provided is not available. So I tried to find the corresponding code in GitHub. And the new question is the repositories are too old.(https://github.com/devsisters/DQN-tensorflow) (https://github.com/jihoonerd/Human-level-control-through-deep-reinforcement-learning) the first one requires tensorflow0.12.0, but the oldest version of python that my anaconda supports is 3.6.0(on which tensorflow0.12.0 cannot work), so I tried the second one but the packages in requirements.txt always conflict with each other.

For the second repositories, I tried to install the correct versions. but I still cannot run the code

enter image description here

How to make the code runnable? Or are there any other resources of the code of the paper?

I used venv in conda with python==3.7.0 and following packages:

absl-py==0.15.0

argon2-cffi==23.1.0

argon2-cffi-bindings==21.2.0

astor==0.8.0

astroid==2.7.3

astunparse==1.6.3

atari-py==0.2.6

atomicwrites==1.3.0

attrs==19.2.0

backcall==0.1.0

bleach==3.3.0

cachetools==5.3.3

certifi @ file:///C:/b/abs_85o_6fm0se/croot/certifi_1671487778835/work/certifi

cffi==1.15.1

charset-normalizer==3.3.2

click==8.1.7

cloudpickle==1.2.2

colorama==0.4.6

cycler==0.10.0

decorator==4.4.0

defusedxml==0.6.0

entrypoints==0.3

flatbuffers==1.12

flit_core @ file:///opt/conda/conda-bld/flit-core_1644941570762/work/source/flit_core

future==0.17.1

gast==0.3.3

google-auth==2.28.2

google-auth-oauthlib==0.4.6

google-pasta==0.2.0

grpcio==1.32.0

gym==0.26.2

gym-notices==0.0.8

h5py==2.10.0

idna==3.6

imageio==2.6.1

importlib-metadata==6.7.0

importlib-resources==5.12.0

ipykernel==5.1.2

ipython==7.9.0

ipython-genutils==0.2.0

ipywidgets==7.5.1

isort==4.3.21

jedi==0.15.1

Jinja2==2.10.1

jsonschema==3.0.2

jupyter==1.0.0

jupyter-client==5.3.4

jupyter-console==6.0.0

jupyter-core==4.6.1

Keras-Applications==1.0.8

Keras-Preprocessing==1.1.2

kiwisolver==1.1.0

lazy-object-proxy==1.4.2

libtorrent==2.0.9

logger==1.4

Markdown==3.1.1

MarkupSafe==1.1.1

matplotlib==3.1.1

mccabe==0.6.1

mistune==0.8.4

mkl-fft==1.3.1

mkl-random @ file:///C:/ci/mkl_random_1626186163140/work

mkl-service==2.4.0

more-itertools==7.2.0

nbconvert==5.6.0

nbformat==4.4.0

networkx==2.3

notebook==6.1.5

numpy==1.19.5

oauthlib==3.2.2

opencv-python==4.1.2.30

opt-einsum==3.3.0

packaging==19.2

pandocfilters==1.4.2

parso==0.5.1

pexpect==4.7.0

pickleshare==0.7.5

Pillow==9.5.0

platformdirs==2.6.1

pluggy==0.13.0

prometheus-client==0.7.1

prompt-toolkit==2.0.9

protobuf==3.9.2

ptyprocess==0.6.0

py==1.8.0

pyasn1==0.5.1

pyasn1-modules==0.3.0

pycparser==2.21

pyglet==1.3.2

Pygments==2.4.2

pylint==2.10.2

pyparsing==2.4.2

pyrsistent==0.15.4

pytest==5.0.1

python-dateutil==2.8.0

pytz @ file:///C:/b/abs_22fofvpn1x/croot/pytz_1671698059864/work

PyWavelets==1.0.3

pywin32==306

pywinpty==2.0.10

pyzmq==18.1.1

qtconsole==4.5.5

requests==2.31.0

requests-oauthlib==1.4.0

rsa==4.9

scipy==1.3.2

Send2Trash==1.5.0

sip==4.19.13

six==1.15.0

tensorboard==2.8.0

tensorboard-data-server==0.6.1

tensorboard-plugin-wit==1.8.1

tensorflow-estimator==2.4.0

tensorflow-gpu==2.4.0

termcolor==1.1.0

terminado==0.8.3

testpath==0.4.2

toml==0.10.2

tornado==6.0.3

tqdm==4.66.2

traitlets==4.3.2

typed-ast==1.4.0

typing-extensions==3.7.4.3

urllib3==2.0.7

wcwidth==0.1.7

webencodings==0.5.1

Werkzeug==0.16.0

widgetsnbextension==3.5.1

wincertstore==0.2

wrapt==1.12.1

zipp==3.15.0
0

There are 0 answers