I made a glm with the following formula
glm(lone_total ~ class + age + basic_needs_covered_id,
data = mod_data_lone,
family = gaussian(link = "inverse") )
The coefficients are interpreted with this equation:
Y=1/(β2X2+β1X1+β0)
Now to visualize my model, I need to predict a data set. With Gamma-models, I did this before using
pred_data <- predict(final_model,
newdata = newdata_income,
se.fit = TRUE,
type = "response")
and than run exp() on the vlaues
#log to exp
pred_data$lwr <- exp(pred_data$fit - 1.96 * pred_data$se.fit)
pred_data$upr <- exp(pred_data$fit + 1.96 * pred_data$se.fit)
pred_data$fit <- exp(pred_data$fit)
But this doesn't work on my current model, the slopes (or values) remain inverse. how can I predict the values based on the equation given above? Y=1/(β2X2+β1X1+β0)
I got it. Just 1/ instead of exp() in the last step: