my code below
I have a little knight's tour problem I'm trying to solve: find the smallest number of moves from point A to point B on an N*N chess board.
I created a board, and used a simple algorithm:
1. add point A to candidate list and start loop:
2. pop first element in candidate list and check it:
3. if end - return counter
4. else - add the candidate 's "sons" to end of candidate list
5. go to step 2 (counter is incremented after all previous level sons are popped)
This algorithm works as I expected (used it on a few test cases), but it was very slow:
The call f = Find_route(20, Tile(4,4), Tile(14,11))
(20 is the board dimensions, Tile(4,4) and Tile(14,11) are the start & end positions, respectively) checked 201590 (!!) tiles before reaching the answer.
I tried optimizing it by sorting the candidates list with sorted(tiles, key = lambda e : abs(e.x - end.x)+abs(e.y - end.y))
where tiles
is the candidates list. That works for some of the cases but for some it is kind of useless.
helpful cases:
f = Find_route(20, Tile(1,4), Tile(1,10)) from 459 to 309 (~33% !!)
f = Find_route(20, Tile(7,0), Tile(1,11)) from 87738 to 79524 (~10% :( )
unhelpful cases:
f = Find_route(20, Tile(4,4), Tile(14,11)): from 201891 to 201590
f = Find_route(20, Tile(1,4), Tile(1,11)) from 2134 to 2111
I want eventually to have a list of near-end cases, from which the algorithm would know exactly what to do, (something like a 5 tiles radius), and I think that could help, but I am more interested in how to improve my optimize_list
method. Any tips?
Code
class Tile(object):
def __init__(self, x, y):
self.x = x
self.y = y
def __str__(self):
tmp = '({0},{1})'.format(self.x, self.y)
return tmp
def __eq__(self, new):
return self.x == new.x and self.y == new.y
def get_horse_jumps(self, max_x , max_y):
l = [(1,2), (1,-2), (-1,2), (-1,-2), (2,1), (2,-1), (-2,1), (-2,-1)]
return [Tile(self.x + i[0], self.y + i[1]) for i in l if (self.x + i[0]) >= 0 and (self.y + i[1]) >= 0 and (self.x + i[0]) < max_x and (self.y + i[1]) < max_y]
class Board(object):
def __init__(self, n):
self.dimension = n
self.mat = [Tile(x,y) for y in range(n) for x in range(n)]
def show_board(self):
print('-'*20, 'board', '-'*20)
n = self.dimension
s = ''
for i in range(n):
for j in range(n):
s += self.mat[i*n + j].__str__()
s += '\n'
print(s,end = '')
print('-'*20, 'board', '-'*20)
class Find_route(Board):
def __init__(self, n, start, end):
super(Find_route, self).__init__(n)
#self.show_board()
self.start = start
self.end = end
def optimize_list(self, tiles, end):
return sorted(tiles, key = lambda e : abs(e.x - end.x)+abs(e.y - end.y))
def find_shortest_path(self, optimize = False):
counter = 0
sons = [self.start]
next_lvl = []
num_of_checked = 0
while True:
curr = sons.pop(0)
num_of_checked += 1
if curr == self.end:
print('checked: ', num_of_checked)
return counter
else: # check sons
next_lvl += curr.get_horse_jumps(self.dimension, self.dimension)
# sons <- next_lvl (optimize?)
# next_lvl <- []
if sons == []:
counter += 1
if optimize:
sons = self.optimize_list(next_lvl, self.end)
else:
sons = next_lvl
next_lvl = []
optimize = True
f = Find_route(20, Tile(7,0), Tile(1,11))
print(f.find_shortest_path(optimize))
print(f.find_shortest_path())
EDIT
I added another optimization level - optimize list at any insertion of new candidate tiles, and it seems to work like a charm, for some cases:
if optimize == 2:
if sons == []:
#counter += 1
sons = self.optimize_list(next_lvl, self.end)
else:
sons = self.optimize_list(sons + next_lvl, self.end)
else:
if sons == []:
counter += 1
if optimize == 1:
sons = self.optimize_list(next_lvl, self.end)
else:
sons = next_lvl
next_lvl = []
optimize = 2
f = Find_route(20, Tile(1,4), Tile(8,18)) # from 103761 to 8 ( optimal!!! )
print(f.find_shortest_path(optimize))
print(f.find_shortest_path())
I have a problem with calculating the number-of-jumps because I don't know when to increment the counter (maybe at each check?), but it seems to at least converge faster. Also, for other cases (e.g. f = Find_route(20, Tile(1,4), Tile(8,17))
) it does not improve at all (not sure if it stops...)
Don't reinvent the wheel.
Build a graph with tiles as vertices. Connect tiles with an edge if a knight can get from one tile to another in one step.
Use a standard path finding algorithm. The breadth-first search looks like the best option in you're looking for a shortest path in an unweighted graph.