Image based steganography that survives resizing?

2.2k views Asked by At

I am using a startech capture card for capturing video from the source machine..I have encoded that video using matlab so every frame of that video will contain that marker...I run that video on the source computer(HDMI out) connected via HDMI to my computer(HDMI IN) once i capture the frame as bitmap(1920*1080) i re-size it to 1280*720 i send it for processing , the processing code checks every pixel for that marker.

The issue is my capture card is able to capture only at 1920*1080 where as the video is of 1280*720. Hence in order to retain the marker I am down scaling the frame captured to 1280*720 which in turn alters the entire pixel array I believe and hence I am not able to retain marker I fed in to the video.

In that capturing process the image is going through up-scaling which in turn changes the pixel values.

I am going through few research papers on Steganography but it hasn't helped so far. Is there any technique that could survive image resizing and I could retain pixel values.

Any suggestions or pointers will be really appreciated.

2

There are 2 answers

0
Reti43 On

My advice is to start with searching for an alternative software that doesn't rescale, compress or otherwise modify any extracted frames before handing them to your control. It may save you many headaches and days worth of time. If you insist on implementing, or are forced to implement a steganography algorithm that survives resizing, keep on reading.

I can't provide a specific solution because there are many ways this can be (possibly) achieved and they are complex. However, I'll describe the ingredients a solution will most likely involve and your limitations with such an approach.

Resizing a cover image is considered an attack as an attempt to destroy the secret. Other such examples include lossy compression, noise, cropping, rotation and smoothing. Robust steganography is the medicine for that, but it isn't all powerful; it may be able to provide resistance to only specific types attacks and/or only small scale attacks at that. You need to find or design an algorithm that suits your needs.

For example, let's take a simple pixel lsb substitution algorithm. It modifies the lsb of a pixel to be the same as the bit you want to embed. Now consider an attack where someone randomly applies a pixel change of -1 25% of the time, 0 50% of the time and +1 25% of the time. Effectively, half of the time it will flip your embedded bit, but you don't know which ones are affected. This makes extraction impossible. However, you can alter your embedding algorithm to be resistant against this type of attack. You know the absolute value of the maximum change is 1. If you embed your secret bit, s, in the 3rd lsb, along with setting the last 2 lsbs to 01, you guarantee to survive the attack. More specifically, you get xxxxxs01 in binary for 8 bits.

Let's examine what we have sacrificed in order to survive such an attack. Assuming our embedding bit and the lsbs that can be modified all have uniform probabilities, the probability of changing the original pixel value with the simple algorithm is

change | probability
-------+------------
   0   |    1/2
   1   |    1/2

and with the more robust algorithm

change | probability
-------+------------
   0   |    1/8
   1   |    1/4
   2   |    3/16
   3   |    1/8
   4   |    1/8
   5   |    1/8
   6   |    1/16

That's going to affect our PSNR quite a bit if we embed a lot of information. But we can do a bit better than that if we employ the optimal pixel adjustment method. This algorithm minimises the Euclidean distance between the original value and the modified one. In simpler terms, it minimises the absolute difference. For example, assume you have a pixel with binary value xxxx0111 and you want to embed a 0. This means you have to make the last 3 lsbs 001. With a naive substitution, you get xxxx0001, which has a distance of 6 from the original value. But xxx1001 has only 2.

Now, let's assume that the attack can induce a change of 0 33.3% of the time, 1 33.3% of the time and 2 33.3%. Of that last 33.3%, half the time it will be -2 and the other half it will be +2. The algorithm we described above can actually survive a +2 modification, but not a -2. So 16.6% of the time our embedded bit will be flipped. But now we introduce error correcting codes. If we apply such a code that has the potential to correct on average 1 error every 6 bits, we are capable of successfully extracting our secret despite the attack altering it.

Error correction generally works by adding some sort of redundancy. So even if part of our bit stream is destroyed, we can refer to that redundancy to retrieve the original information. Naturally, the more redundancy you add, the better the error correction rate, but you may have to double the redundancy just to improve the correction rate by a few percent (just arbitrary numbers here).

Let's appreciate here how much information you can hide in a 1280x720 (grayscale) image. 1 bit per pixel, for 8 bits per letter, for ~5 letters per word and you can hide 20k words. That's a respectable portion of an average novel. It's enough to hide your stellar Masters dissertation, which you even published, in your graduation photo. But with a 4 bit redundancy per 1 bit of actual information, you're only looking at hiding that boring essay you wrote once, which didn't even get the best mark in the class.

There are other ways you can embed your information. For example, specific methods in the frequency domain can be more resistant to pixel modifications. The downside of such methods are an increased complexity in coding the algorithm and reduced hiding capacity. That's because some frequency coefficients are resistant to changes but make embedding modifications easily detectable, then there are those that are fragile to changes but they are hard to detect and some lie in the middle of all of this. So you compromise and use only a fraction of the available coefficients. Popular frequency transforms used in steganography are the Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT).

In summary, if you want a robust algorithm, the consistent themes that emerge are sacrificing capacity and applying stronger distortions to your cover medium. There have been quite a few studies done on robust steganography for watermarks. That's because you want your watermark to survive any attacks so you can prove ownership of the content and watermarks tend to be very small, e.g. a 64x64 binary image icon (that's only 4096 bits). Even then, some algorithms are robust enough to recover the watermark almost intact, say 70-90%, so that it's still comparable to the original watermark. In some case, this is considered good enough. You'd require an even more robust algorithm (bigger sacrifices) if you want a lossless retrieval of your secret data 100% of the time.

If you want such an algorithm, you want to comb the literature for one and test any possible candidates to see if they meet your needs. But don't expect anything that takes only 15 lines to code and 10 minutes of reading to understand. Here is a paper that looks like a good start: Mali et al. (2012). Robust and secured image-adaptive data hiding. Digital Signal Processing, 22(2), 314-323. Unfortunately, the paper is not open domain and you will either need a subscription, or academic access in order to read it. But then again, that's true for most of the papers out there. You said you've read some papers already and in previous questions you've stated you're working on a college project, so access for you may be likely.

For this specific paper, table 4 shows the results of resisting a resizing attack and section 4.4 discusses the results. They don't explicitly state 100% recovery, but only a faithful reproduction. Also notice that the attacks have been of the scale 5-20% resizing and that only allows for a few thousand embedding bits. Finally, the resizing method (nearest neighbour, cubic, etc) matters a lot in surviving the attack.

0
Fotios Basagiannis On

I have designed and implemented ChromaShift: https://www.facebook.com/ChromaShift/

If done right, steganography can resiliently (i.e. robustly) encode identifying information (e.g. downloader user id) in the image medium while keeping it essentially perceptually unmodified. Compared to watermarks, steganography is a subtler yet more powerful way of encoding information in images.

The information is dynamically multiplexed into the Cb Cr fabric of the JPEG by chroma-shifting pixels to a configurable small bump value. As the human eye is more sensitive to luminance changes than to chrominance changes, chroma-shifting is virtually imperceptible while providing a way to encode arbitrary information in the image. The ChromaShift engine does both watermarking and pure steganography. Both DRM subsystems are configurable via a rich set of of options.

The solution is developed in C, for the Linux platform, and uses SWIG to compile into a PHP loadable module. It can therefore be accessed by PHP scripts while providing the speed of a natively compiled program.