I'm forecasting a univariant time series using darts Regression model with scikit.learn's Linear Regression. The ts I'm working with is from 2019 until 2023 with a monthly granularity.
It seems the Darts framework is asking for an attribute that's not provided by scikit.learn's Linear Regression, as following, when I try .fit() I get AttributeError: 'numpy.ndarray' object has no attribute '_validate_params.
Update: I'm adding a data chunk that reproduces the error so anyone could tell if the same error would happen with him?
import pandas as pd
from darts import TimeSeries
index = pd.date_range(start='2019-01-01', end='2023-07-01', freq='M', inclusive='both')
values = [80, 65, 65, 73, 73, 73, 72, 72, 80, 80, 80, 72, 80, 80, 80, 80, 80, 80, 40, 40, 40, 80, 48, 48, 48, 48, 48, 48, 48, 48, 48, 56, 48, 48, 48, 48, 42, 42, 42, 42, 42, 42, 51, 42, 50, 42, 42, 50, 34, 30, 10, 10, 9, 8]
example_df = pd.DataFrame(values, index, columns=['util'])
ts = TimeSeries.from_dataframe(example_df,
value_cols=['util'],
fill_missing_dates=True)
# Create training data, hold out last 10 data points for test
y_train = ts[:-10]
y_test = ts[-10:]
# Specify and train the model
from darts.models import RegressionModel
from sklearn.linear_model import LinearRegression
model = RegressionModel(lags = [-1, -2, -3],
model = LinearRegression)
model.fit(series=y_train)
The error appears only when I use model=LinearRegression, if model not passed in argument the error doesn't appear. I expect after model.fit() would run successfully I would follow with model.predict()
AttributeError Traceback (most recent call last)
Cell In[27], line 8
4 # Specify and train model
5 model = RegressionModel(lags=[-1, -2, -3],
6 model=LinearRegression)
----> 8 model.fit(series=y_train)
10 # Forecast
11 y_pred = model.predict(n=10, series=y_train)
File ~\PycharmProjects\OPSDN\venv\Lib\site-packages\darts\models\forecasting\regression_model.py:548, in RegressionModel.fit(self, series, past_covariates, future_covariates, max_samples_per_ts, n_jobs_multioutput_wrapper, **kwargs)
540 logger.warning("Provided `n_jobs_multioutput_wrapper` wasn't used.")
542 super().fit(
543 series=seq2series(series),
544 past_covariates=seq2series(past_covariates),
545 future_covariates=seq2series(future_covariates),
546 )
--> 548 self._fit_model(
549 series, past_covariates, future_covariates, max_samples_per_ts, **kwargs
550 )
552 return self
File ~\PycharmProjects\OPSDN\venv\Lib\site-packages\darts\models\forecasting\regression_model.py:416, in RegressionModel._fit_model(self, target_series, past_covariates, future_covariates, max_samples_per_ts, **kwargs)
414 if len(training_labels.shape) == 2 and training_labels.shape[1] == 1:
415 training_labels = training_labels.ravel()
--> 416 self.model.fit(training_samples, training_labels, **kwargs)
418 # generate and store the lagged components names (for feature importance analysis)
419 self._lagged_feature_names, _ = create_lagged_component_names(
420 target_series=target_series,
421 past_covariates=past_covariates,
(...)
428 use_static_covariates=self.uses_static_covariates,
429 )
File ~\PycharmProjects\OPSDN\venv\Lib\site-packages\sklearn\base.py:1144, in _fit_context.<locals>.decorator.<locals>.wrapper(estimator, *args, **kwargs)
1139 partial_fit_and_fitted = (
1140 fit_method.__name__ == "partial_fit" and _is_fitted(estimator)
1141 )
1143 if not global_skip_validation and not partial_fit_and_fitted:
-> 1144 estimator._validate_params()
1146 with config_context(
1147 skip_parameter_validation=(
1148 prefer_skip_nested_validation or global_skip_validation
1149 )
1150 ):
1151 return fit_method(estimator, *args, **kwargs)
AttributeError: 'numpy.ndarray' object has no attribute '_validate_params'
Passing
sklearn'sLinearRegression()as an instance solved this problem: