We are performing a beta mixed-effects regression analysis using glmmTMB package, as shown below:
mod = glmmTMB::glmmTMB(data = data,
formula = rating ~ par1 + par2 + par3 +
(1|subject)+(1|item),
family = glmmTMB::beta_family())
Next, we would like to run a model comparison — something similar to the ‘step’ function that is used for ‘lm’ objects. So far, we found the function ‘dredge’ from the MuMIn package which computes the fit of the nested models according to a criterion (e.g. BIC):
MuMIn::dredge(mod, rank = 'BIC', evaluate = T)
OUTPUT:
Model selection table
cnd((Int)) dsp((Int)) cnd(par1) cnd(par2) cnd(par3) df logLik BIC delta weight
2 1.341 + -0.4466 5 2648.524 -5258.3 0.00 0.950
6 1.341 + -0.4466 0.03311 6 2648.913 -5251.3 6.97 0.029
4 1.341 + -0.4468 -0.005058 6 2648.549 -5250.6 7.70 0.020
8 1.341 + -0.4470 -0.011140 0.03798 7 2649.025 -5243.8 14.49 0.001
1 1.321 + 4 2604.469 -5177.9 80.36 0.000
5 1.321 + 0.03116 5 2604.856 -5171.0 87.34 0.000
3 1.321 + -0.001771 5 2604.473 -5170.2 88.10 0.000
7 1.321 + -0.007266 0.03434 6 2604.909 -5163.3 94.98 0.000
However, we would like to know whether the difference in fit between these nested models is statistically significant. For lms with a normally distributed dependent variable, we would use anova, but here we are not sure if it is applicable to models with beta distribution or glmmTMB object.
You could use the buildmer package to do stepwise regression with
glmmTMBmodels (you should definitely read about critiques of stepwise regression as well). However, the short answer to your question is that theanova()method, which implements a likelihood ratio test, is implemented for pairwise comparison ofglmmTMBfits of nested models, and the theory works just fine. Some of the more important assumptions are: (1) no model assumptions are violated [independence, choice of conditional distribution, linearity on the appropriate scale, normality of random effects, etc.]; (2) the models are nested, and are applied to the same data set; (3) the sample size is large enough that asymptotic methods are applicable.