I have a data frame with 395 observations and 36 variables. I am doing cross validation to select the best few variables to classify the student qualifications. I have written this code:
k<-5
error <- c()
for(l in 1:35){
if(l!=31 && l!=32 && l!=33){
x<-0
for (i in 1:k){
train<-rep(TRUE, dim(student.mat)[1])
for(j in 1:dim(student.mat)[1]/k){
train[(i-1)*dim(student.mat)[1]/k+j]<-FALSE
}
test=!train
student.test=student.mat[test,]
student.train=student.mat[train,]
nota3.test=nota3[test]
lda.fit<-lda(nota3~student.mat[,i], data=student.mat, subset=train)
lda.pred<-predict(lda.fit, student.test)
table(lda.pred$class, nota3.test)
y<-mean(lda.pred$class!=nota3.test)
x<-x+y
#cat("k = ", i, "error: ", y*100,"%", "\n")
}
#cat("Media del error = ", x/k*100,"%", "\n")
error <- c(error, x/k)
}else{
error <- c(error, 100)
}
}
error
names(student.mat)[which.max(error)]
and I get this error:
Error in table(lda.pred$class, nota3.test) : all arguments must have the same length Also: lost warning messages 'newdata' had 79 rows but variables found have 395 rows
but if I write the name of one variable of the data set instead of student.mat[,i]
, it works.
The lda function don't read student.mat[,i]
correctly.
You can create the formula programmatically: