ICP to trajectory estimation, transformation matrix different than groundtruth (point clouds)

90 views Asked by At

I have this ground-truth trajectory, which is an array with 30 homogeneous coordinates transformation matrix that are 30 positions of a car.

[[[ 1.000000e+00  9.043680e-12  2.326809e-11  5.551115e-17]
  [ 9.043683e-12  1.000000e+00  2.392370e-10  3.330669e-16]
  [ 2.326810e-11  2.392370e-10  9.999999e-01 -4.440892e-16]
  [ 0.000000e+00  0.000000e+00  0.000000e+00  1.000000e+00]]

 [[ 9.999978e-01  5.272628e-04 -2.066935e-03 -4.690294e-02]
  [-5.296506e-04  9.999992e-01 -1.154865e-03 -2.839928e-02]
  [ 2.066324e-03  1.155958e-03  9.999971e-01  8.586941e-01]
  [ 0.000000e+00  0.000000e+00  0.000000e+00  1.000000e+00]]

 [[ 9.999910e-01  1.048972e-03 -4.131348e-03 -9.374345e-02]
  [-1.058514e-03  9.999968e-01 -2.308104e-03 -5.676064e-02]
  [ 4.128913e-03  2.312456e-03  9.999887e-01  1.716275e+00]
  [ 0.000000e+00  0.000000e+00  0.000000e+00  1.000000e+00]]

 [[ 9.999796e-01  1.566466e-03 -6.198571e-03 -1.406429e-01]
  [-1.587952e-03  9.999927e-01 -3.462706e-03 -8.515762e-02]
  [ 6.193102e-03  3.472479e-03  9.999747e-01  2.574964e+00]
  [ 0.000000e+00  0.000000e+00  0.000000e+00  1.000000e+00]]

 [[ 9.999637e-01  2.078471e-03 -8.263498e-03 -1.874858e-01]
  [-2.116664e-03  9.999871e-01 -4.615826e-03 -1.135202e-01]
  [ 8.253797e-03  4.633149e-03  9.999551e-01  3.432648e+00]
  [ 0.000000e+00  0.000000e+00  0.000000e+00  1.000000e+00]]

 [[ 9.999433e-01  2.586172e-03 -1.033094e-02 -2.343818e-01]
  [-2.645881e-03  9.999798e-01 -5.770163e-03 -1.419150e-01]
  [ 1.031581e-02  5.797170e-03  9.999299e-01  4.291335e+00]
  [ 0.000000e+00  0.000000e+00  0.000000e+00  1.000000e+00]]

 [[ 9.999184e-01  3.088363e-03 -1.239599e-02 -2.812195e-01]
  [-3.174350e-03  9.999710e-01 -6.922975e-03 -1.702743e-01]
  [ 1.237425e-02  6.961759e-03  9.998991e-01  5.148987e+00]
  [ 0.000000e+00  0.000000e+00  0.000000e+00  1.000000e+00]]

 [[ 9.998890e-01  3.586305e-03 -1.446384e-02 -3.281178e-01]
  [-3.703403e-03  9.999605e-01 -8.077186e-03 -1.986703e-01]
  [ 1.443430e-02  8.129853e-03  9.998627e-01  6.007777e+00]
  [ 0.000000e+00  0.000000e+00  0.000000e+00  1.000000e+00]]

 [[ 9.998551e-01  4.078705e-03 -1.652913e-02 -3.749547e-01]
  [-4.231669e-03  9.999484e-01 -9.229794e-03 -2.270290e-01]
  [ 1.649063e-02  9.298401e-03  9.998207e-01  6.865477e+00]
  [ 0.000000e+00  0.000000e+00  0.000000e+00  1.000000e+00]]

 [[ 9.998167e-01  4.566671e-03 -1.859652e-02 -4.218367e-01]
  [-4.760342e-03  9.999347e-01 -1.038342e-02 -2.554151e-01]
  [ 1.854788e-02  1.047004e-02  9.997731e-01  7.724036e+00]
  [ 0.000000e+00  0.000000e+00  0.000000e+00  1.000000e+00]]

 [[ 9.997738e-01  5.049868e-03 -2.066463e-02 -4.687329e-01]
  [-5.289072e-03  9.999194e-01 -1.153730e-02 -2.838096e-01]
  [ 2.060470e-02  1.164399e-02  9.997198e-01  8.582886e+00]
  [ 0.000000e+00  0.000000e+00  0.000000e+00  1.000000e+00]]

 [[ 9.997264e-01  5.527315e-03 -2.272922e-02 -5.155474e-01]
  [-5.816781e-03  9.999025e-01 -1.268908e-02 -3.121547e-01]
  [ 2.265686e-02  1.281782e-02  9.996611e-01  9.440275e+00]
  [ 0.000000e+00  0.000000e+00  0.000000e+00  1.000000e+00]]

 [[ 9.996745e-01  6.000540e-03 -2.479692e-02 -5.624310e-01]
  [-6.345160e-03  9.998840e-01 -1.384246e-02 -3.405416e-01]
  [ 2.471098e-02  1.399530e-02  9.995966e-01  1.029896e+01]
  [ 0.000000e+00  0.000000e+00  0.000000e+00  1.000000e+00]]

 [[ 9.996182e-01  6.468772e-03 -2.686440e-02 -6.093087e-01]
  [-6.873365e-03  9.998639e-01 -1.499561e-02 -3.689250e-01]
  [ 2.676374e-02  1.517453e-02  9.995266e-01  1.115757e+01]
  [ 0.000000e+00  0.000000e+00  0.000000e+00  1.000000e+00]]

 [[ 9.995562e-01  7.058450e-03 -2.894213e-02 -6.562052e-01]
  [-7.530449e-03  9.998399e-01 -1.623192e-02 -3.973964e-01]
  [ 2.882292e-02  1.644266e-02  9.994492e-01  1.201541e+01]
  [ 0.000000e+00  0.000000e+00  0.000000e+00  1.000000e+00]]

 [[ 9.995095e-01  5.595311e-03 -3.081450e-02 -7.018788e-01]
  [-6.093682e-03  9.998517e-01 -1.610315e-02 -4.239119e-01]
  [ 3.071983e-02  1.628303e-02  9.993953e-01  1.286965e+01]
  [ 0.000000e+00  0.000000e+00  0.000000e+00  1.000000e+00]]

 [[ 9.994226e-01  7.842768e-03 -3.306167e-02 -7.498241e-01]
  [-8.456089e-03  9.997940e-01 -1.845198e-02 -4.540039e-01]
  [ 3.291014e-02  1.872089e-02  9.992829e-01  1.373146e+01]
  [ 0.000000e+00  0.000000e+00  0.000000e+00  1.000000e+00]]

 [[ 9.993587e-01  8.704386e-03 -3.473400e-02 -7.992511e-01]
  [-9.439421e-03  9.997338e-01 -2.105422e-02 -4.840770e-01]
  [ 3.454149e-02  2.136859e-02  9.991747e-01  1.460026e+01]
  [ 0.000000e+00  0.000000e+00  0.000000e+00  1.000000e+00]]

 [[ 9.992482e-01  1.235688e-02 -3.674849e-02 -8.546642e-01]
  [-1.320676e-02  9.996488e-01 -2.297477e-02 -5.155070e-01]
  [ 3.645169e-02  2.344282e-02  9.990604e-01  1.547957e+01]
  [ 0.000000e+00  0.000000e+00  0.000000e+00  1.000000e+00]]

 [[ 9.991826e-01  1.352279e-02 -3.809783e-02 -9.072868e-01]
  [-1.439161e-02  9.996404e-01 -2.262373e-02 -5.464705e-01]
  [ 3.777819e-02  2.315352e-02  9.990178e-01  1.636940e+01]
  [ 0.000000e+00  0.000000e+00  0.000000e+00  1.000000e+00]]

 [[ 9.991241e-01  1.328777e-02 -3.967996e-02 -9.609163e-01]
  [-1.412604e-02  9.996813e-01 -2.092052e-02 -5.783595e-01]
  [ 3.938933e-02  2.146271e-02  9.989934e-01  1.726896e+01]
  [ 0.000000e+00  0.000000e+00  0.000000e+00  1.000000e+00]]

 [[ 9.990604e-01  1.351433e-02 -4.118029e-02 -1.011589e+00]
  [-1.432436e-02  9.997084e-01 -1.943894e-02 -6.092403e-01]
  [ 4.090558e-02  2.001055e-02  9.989626e-01  1.817318e+01]
  [ 0.000000e+00  0.000000e+00  0.000000e+00  1.000000e+00]]

 [[ 9.990174e-01  1.304822e-02 -4.235654e-02 -1.066256e+00]
  [-1.386115e-02  9.997242e-01 -1.895579e-02 -6.387363e-01]
  [ 4.209752e-02  1.952427e-02  9.989227e-01  1.908411e+01]
  [ 0.000000e+00  0.000000e+00  0.000000e+00  1.000000e+00]]

 [[ 9.989383e-01  1.325999e-02 -4.411963e-02 -1.118651e+00]
  [-1.413494e-02  9.997084e-01 -1.957870e-02 -6.686219e-01]
  [ 4.384715e-02  2.018154e-02  9.988343e-01  1.999722e+01]
  [ 0.000000e+00  0.000000e+00  0.000000e+00  1.000000e+00]]

 [[ 9.989120e-01  1.152857e-02 -4.518863e-02 -1.171840e+00]
  [-1.247777e-02  9.997062e-01 -2.077977e-02 -6.990778e-01]
  [ 4.493579e-02  2.132101e-02  9.987623e-01  2.091368e+01]
  [ 0.000000e+00  0.000000e+00  0.000000e+00  1.000000e+00]]

 [[ 9.988800e-01  1.128892e-02 -4.595003e-02 -1.224279e+00]
  [-1.218132e-02  9.997417e-01 -1.918760e-02 -7.287421e-01]
  [ 4.572155e-02  1.972584e-02  9.987594e-01  2.184042e+01]
  [ 0.000000e+00  0.000000e+00  0.000000e+00  1.000000e+00]]

 [[ 9.988593e-01  1.299421e-02 -4.594914e-02 -1.280807e+00]
  [-1.370812e-02  9.997896e-01 -1.525610e-02 -7.604717e-01]
  [ 4.574123e-02  1.586857e-02  9.988272e-01  2.277432e+01]
  [ 0.000000e+00  0.000000e+00  0.000000e+00  1.000000e+00]]

 [[ 9.988876e-01  1.379030e-02 -4.509495e-02 -1.334841e+00]
  [-1.432558e-02  9.998304e-01 -1.156850e-02 -7.929673e-01]
  [ 4.492776e-02  1.220164e-02  9.989157e-01  2.370953e+01]
  [ 0.000000e+00  0.000000e+00  0.000000e+00  1.000000e+00]]

 [[ 9.989649e-01  1.285173e-02 -4.363580e-02 -1.385747e+00]
  [-1.325687e-02  9.998715e-01 -9.007757e-03 -8.209244e-01]
  [ 4.351442e-02  9.576906e-03  9.990068e-01  2.465175e+01]
  [ 0.000000e+00  0.000000e+00  0.000000e+00  1.000000e+00]]

 [[ 9.990298e-01  1.265253e-02 -4.218321e-02 -1.436633e+00]
  [-1.299403e-02  9.998849e-01 -7.831284e-03 -8.456208e-01]
  [ 4.207926e-02  8.371815e-03  9.990791e-01  2.559694e+01]
  [ 0.000000e+00  0.000000e+00  0.000000e+00  1.000000e+00]]]

I am doing an ICP in each point cloud I have and then I am taking the transformation matrix of each source and target, and making my array trajectory. but I see that the ground truth has only the first matrix equaling 1 and the rest all starts with 9 and mine is jumping from 1 to 9 all the time

[[[ 9.99990294e-01 -9.79876725e-04  4.74431620e-04 -6.63781000e-03]
  [ 9.79861234e-04  9.99990406e-01  3.28838706e-05  5.59895312e-03]
  [-4.74463614e-04 -3.24189697e-05  9.99990774e-01 -1.14888461e-03]
  [ 0.00000000e+00  0.00000000e+00  0.00000000e+00  1.00000000e+00]]

 [[ 1.00018268e+00  8.14803903e-04 -4.53000232e-04 -1.68058379e-02]
  [-8.14816032e-04  1.00018278e+00 -2.65962366e-05 -4.41518765e-04]
  [ 4.52978415e-04  2.69652693e-05  1.00018301e+00 -4.50599907e-04]
  [ 0.00000000e+00  0.00000000e+00  0.00000000e+00  1.00000000e+00]]

 [[ 9.99845226e-01 -1.98113875e-05  2.74619394e-04 -8.50417373e-03]
  [ 1.96509057e-05  9.99845093e-01  5.84279054e-04 -8.79387604e-04]
  [-2.74630925e-04 -5.84273635e-04  9.99845056e-01  1.79846462e-03]
  [ 0.00000000e+00  0.00000000e+00  0.00000000e+00  1.00000000e+00]]

 [[ 9.99844965e-01  2.57145746e-04  4.18682639e-04 -5.36429085e-03]
  [-2.57644879e-04  9.99844341e-01  1.19234806e-03 -1.11984018e-03]
  [-4.18375673e-04 -1.19245580e-03  9.99844287e-01  3.66727746e-03]
  [ 0.00000000e+00  0.00000000e+00  0.00000000e+00  1.00000000e+00]]

 [[ 1.00038202e+00  2.76087779e-04  3.37802144e-04 -6.13155960e-03]
  [-2.76256937e-04  1.00038195e+00  5.01007154e-04 -2.43701146e-03]
  [-3.37663819e-04 -5.01100391e-04  1.00038193e+00  1.72724107e-03]
  [ 0.00000000e+00  0.00000000e+00  0.00000000e+00  1.00000000e+00]]

 [[ 1.00051256e+00  1.30503950e-04 -5.23983383e-04 -5.60173718e-03]
  [-1.31065989e-04  1.00051212e+00 -1.07328758e-03 -8.35482833e-03]
  [ 5.23843081e-04  1.07335606e-03  1.00051200e+00 -2.18030897e-03]
  [ 0.00000000e+00  0.00000000e+00  0.00000000e+00  1.00000000e+00]]

 [[ 1.00031491e+00  3.05967105e-04 -1.13032591e-04 -2.91990007e-03]
  [-3.05962652e-04  1.00031491e+00  3.94262340e-05 -2.74101180e-03]
  [ 1.13044645e-04 -3.93916590e-05  1.00031495e+00  4.71574420e-03]
  [ 0.00000000e+00  0.00000000e+00  0.00000000e+00  1.00000000e+00]]

 [[ 1.00038083e+00  3.12874119e-04  2.04488306e-04  2.03103468e-03]
  [-3.12926920e-04  1.00038082e+00  2.58326907e-04 -1.32311207e-03]
  [-2.04407496e-04 -2.58390855e-04  1.00038085e+00  9.50509109e-03]
  [ 0.00000000e+00  0.00000000e+00  0.00000000e+00  1.00000000e+00]]

 [[ 9.99996307e-01  3.16230221e-04  3.55686815e-04  1.56106875e-03]
  [-3.15987809e-04  9.99996139e-01 -6.81380268e-04 -7.12932823e-03]
  [-3.55902189e-04  6.81267797e-04  9.99996125e-01  4.87799679e-03]
  [ 0.00000000e+00  0.00000000e+00  0.00000000e+00  1.00000000e+00]]

 [[ 1.00030792e+00 -1.46242291e-04  3.49406989e-04  9.69184039e-04]
  [ 1.46417012e-04  1.00030785e+00 -5.00232419e-04 -3.23758223e-03]
  [-3.49333809e-04  5.00283527e-04  1.00030780e+00  1.19268204e-03]
  [ 0.00000000e+00  0.00000000e+00  0.00000000e+00  1.00000000e+00]]

 [[ 1.00069025e+00  9.45843059e-05 -1.91183889e-04  2.31457942e-03]
  [-9.46790008e-05  1.00069015e+00 -4.95701874e-04 -1.87684101e-03]
  [ 1.91137011e-04  4.95719951e-04  1.00069014e+00 -2.58417438e-03]
  [ 0.00000000e+00  0.00000000e+00  0.00000000e+00  1.00000000e+00]]

 [[ 1.00086013e+00  8.82705138e-05  7.90657503e-04  2.97173553e-03]
  [-8.90159236e-05  1.00085999e+00  9.43597733e-04  8.45910549e-04]
  [-7.90573928e-04 -9.43667756e-04  1.00085968e+00  1.96582634e-03]
  [ 0.00000000e+00  0.00000000e+00  0.00000000e+00  1.00000000e+00]]

 [[ 1.00076542e+00 -9.02622141e-05  1.41725256e-03  4.94193135e-03]
  [ 9.01544875e-05  1.00076642e+00  7.61327929e-05  9.95342927e-04]
  [-1.41725941e-03 -7.60050425e-05  1.00076542e+00 -5.16527873e-03]
  [ 0.00000000e+00  0.00000000e+00  0.00000000e+00  1.00000000e+00]]

 [[ 1.00126338e+00  1.14192275e-04  6.66747484e-04  3.31178934e-03]
  [-1.14418718e-04  1.00126354e+00  3.40024696e-04  1.40844775e-03]
  [-6.66708662e-04 -3.40100811e-04  1.00126333e+00 -9.41134558e-03]
  [ 0.00000000e+00  0.00000000e+00  0.00000000e+00  1.00000000e+00]]

 [[ 1.00069822e+00 -1.73396713e-04 -1.15113528e-04  3.91673690e-03]
  [ 1.73260997e-04  1.00069753e+00 -1.17876314e-03 -2.32975542e-03]
  [ 1.15317698e-04  1.17874318e-03  1.00069754e+00 -3.15845440e-02]
  [ 0.00000000e+00  0.00000000e+00  0.00000000e+00  1.00000000e+00]]

 [[ 1.00096536e+00  2.05189631e-05  9.53534802e-05  1.49264147e-03]
  [-2.05062720e-05  1.00096536e+00 -1.33221933e-04 -2.56480487e-03]
  [-9.53562103e-05  1.33219979e-04  1.00096536e+00 -3.24515831e-02]
  [ 0.00000000e+00  0.00000000e+00  0.00000000e+00  1.00000000e+00]]

 [[ 1.00127178e+00 -2.55537143e-05  5.35495618e-04  1.03115070e-03]
  [ 2.61570837e-05  1.00127129e+00 -1.12820602e-03 -2.32347878e-03]
  [-5.35466485e-04  1.12821985e-03  1.00127115e+00 -4.01131776e-02]
  [ 0.00000000e+00  0.00000000e+00  0.00000000e+00  1.00000000e+00]]

 [[ 1.00038527e+00  3.83049348e-04 -4.13311775e-04  2.34035456e-03]
  [-3.83805707e-04  1.00038367e+00 -1.83217834e-03 -6.41354056e-03]
  [ 4.12609507e-04  1.83233662e-03  1.00038366e+00 -3.48101996e-02]
  [ 0.00000000e+00  0.00000000e+00  0.00000000e+00  1.00000000e+00]]

 [[ 1.00057952e+00  2.91010353e-04 -9.78183854e-04  4.34165320e-03]
  [-2.90557322e-04  1.00057989e+00  4.63514314e-04  6.86065524e-04]
  [ 9.78318517e-04 -4.63230019e-04  1.00057946e+00 -1.38228691e-02]
  [ 0.00000000e+00  0.00000000e+00  0.00000000e+00  1.00000000e+00]]

 [[ 1.00048248e+00 -1.45027908e-04 -1.73677969e-03  1.32524672e-03]
  [ 1.47115248e-04  1.00048326e+00  1.20235915e-03  1.09147387e-03]
  [ 1.73660412e-03 -1.20261271e-03  1.00048177e+00 -1.29471686e-02]
  [ 0.00000000e+00  0.00000000e+00  0.00000000e+00  1.00000000e+00]]

 [[ 1.00032461e+00  1.80959529e-04 -1.87998946e-03 -1.91349808e-03]
  [-1.78325431e-04  1.00032539e+00  1.40165445e-03  2.24994895e-04]
  [ 1.88024115e-03 -1.40131681e-03  1.00032364e+00 -2.52663491e-02]
  [ 0.00000000e+00  0.00000000e+00  0.00000000e+00  1.00000000e+00]]

 [[ 1.00113679e+00 -1.78816598e-04 -1.86672384e-03 -8.09504432e-03]
  [ 1.83125725e-04  1.00113586e+00  2.31110326e-03 -9.76751278e-04]
  [ 1.86630604e-03 -2.31144066e-03  1.00113414e+00 -3.33325648e-02]
  [ 0.00000000e+00  0.00000000e+00  0.00000000e+00  1.00000000e+00]]

 [[ 9.99165338e-01 -2.53744146e-04 -2.34676360e-03 -4.83436625e-03]
  [ 2.73346882e-04  9.99133201e-01  8.34959634e-03  1.25203668e-02]
  [ 2.34456115e-03 -8.35021506e-03  9.99130483e-01 -9.87975894e-04]
  [ 0.00000000e+00  0.00000000e+00  0.00000000e+00  1.00000000e+00]]

 [[ 9.99698005e-01 -2.16002642e-04 -1.63954977e-03 -7.91466922e-03]
  [ 2.21958657e-04  9.99692749e-01  3.63230921e-03  4.09689059e-03]
  [ 1.63875408e-03 -3.63266827e-03  9.99691429e-01 -6.86969604e-03]
  [ 0.00000000e+00  0.00000000e+00  0.00000000e+00  1.00000000e+00]]

 [[ 9.99156645e-01 -3.14720080e-04 -1.28916127e-03 -1.88186353e-03]
  [ 3.19916225e-04  9.99149351e-01  4.02902138e-03  5.14401403e-03]
  [ 1.28788164e-03 -4.02943060e-03  9.99148571e-01 -8.60493541e-03]
  [ 0.00000000e+00  0.00000000e+00  0.00000000e+00  1.00000000e+00]]

 [[ 1.00023543e+00 -6.24236501e-04 -1.26204086e-03  4.49581779e-03]
  [ 6.31451535e-04  1.00021983e+00  5.72601936e-03  6.96306821e-03]
  [ 1.25844639e-03 -5.72681042e-03  1.00021924e+00  8.21701639e-04]
  [ 0.00000000e+00  0.00000000e+00  0.00000000e+00  1.00000000e+00]]

 [[ 9.99924665e-01  1.35111793e-04 -8.15275284e-04  4.49949924e-03]
  [-1.31882380e-04  9.99917158e-01  3.95958893e-03  5.75866825e-03]
  [ 8.15803913e-04 -3.95948005e-03  9.99916834e-01 -4.43610552e-03]
  [ 0.00000000e+00  0.00000000e+00  0.00000000e+00  1.00000000e+00]]

 [[ 1.00001794e+00  4.96205589e-04 -5.98112845e-05 -1.23280619e-03]
  [-4.96172402e-04  1.00001779e+00  5.53613659e-04 -2.56423656e-04]
  [ 6.00859692e-05 -5.53583914e-04  1.00001791e+00  1.49347691e-03]
  [ 0.00000000e+00  0.00000000e+00  0.00000000e+00  1.00000000e+00]]

 [[ 1.00083213e+00  3.53418101e-04  2.19645127e-05  8.16955085e-04]
  [-3.53417764e-04  1.00083213e+00 -1.53434743e-05 -3.27813758e-03]
  [-2.19699295e-05  1.53357172e-05  1.00083219e+00  1.74476531e-03]
  [ 0.00000000e+00  0.00000000e+00  0.00000000e+00  1.00000000e+00]]]

I think my iterations are wrong... I don't know what is doing this to become wrong. If I pass the ICP in source0, source1 I get first matrix. Source1 and source2, I get second matrix. That's what I am doing.

# carrega os cloud_points presentes em um arquivo
def load_points(path):
    point_clouds = []
    for filename in os.listdir(path):
        filepath = os.path.join(path, filename)
        points = trimesh.load(filepath).vertices
        point_clouds.append(points)
        # retorna todos os pontos do espaço 3d em um array
        all_points = np.concatenate(point_clouds, axis=0)
    return all_points


def correspondence(source, target, limit):
    # Cria uma árvore KD a partir da origem
    # para encontrar o ponto mais próximo na source ate prox ponto
    kd_source = cKDTree(source)
    correspondences = []
    for i, points in enumerate(target):# itera sobre os pontos
        d, source_index = kd_source.query(points, k=1) # procura o ponto mais proximo da origem ate esse
        if(d < limit): 
            correspondences.append((source_index, i))
    return correspondences

def transform(X, Y):
   
    X_ = X - np.mean(X, axis=0)
    Y_ = Y - np.mean(Y, axis=0)

    covariance = np.dot(X_.T, Y_)

    U, _, Vt = np.linalg.svd(covariance)
    R = np.dot(U, Vt)

    scale = np.trace(np.dot(np.dot(R.T, covariance), R)) / np.trace(np.dot(X_.T, X_))

    translation = np.mean(Y, axis=0) - scale * np.dot(R, np.mean(X, axis=0))

    transformation_matrix = np.eye(4)
    # parte superior esquerda (rotação e escala)
    transformation_matrix[:3, :3] = scale * R
    # coluna da direita (translação)
    transformation_matrix[:3, 3] = translation

    return transformation_matrix



# (Iterative Closest-Points (ICP))
def estimate_transform(source, target, correspondences, limit):
    arr = np.array(correspondences) # pega todas as correspondencias de todos os pontos
    length = arr.shape[0]

  
    source_p = source[arr[:, 0]]
    target_p = target[arr[:, 1]]

   
    iterations = 1000
    limit = 0.1  
    best_inliers = None
    best_transform = None

    for i in range(iterations):
        # escolhe entre 3 para estimar a matriz de transformação
        index = np.random.choice(length, size=3, replace=False)
        src_sample = source_p[index]
        trg_sample = target_p[index]

        # matriz de transformação em cada amostras
        matrix = transform(src_sample, trg_sample)

        # Modern Robotics, Chapter 3.3.1: Homogeneous Transformation Matrices
        # transformacao dos pontos
        h_p = np.column_stack((source_p, np.ones(len(source_p)))) #homogenous points
        t_p = np.dot(h_p, matrix.T) #transform points multiplicado pela matriz trasnposta

        
        d = np.linalg.norm(target_p - t_p[:, :3], axis=1)

        
        inliers = np.where(d < limit)[0]

        
        if best_inliers is None or len(inliers) > len(best_inliers):
            best_inliers = inliers
            best_transform = matrix #transform

    
    best_src_points = source_p[best_inliers]
    best_dst_points = target_p[best_inliers]
    best_transform = transform(best_src_points, best_dst_points) #matrix

    return best_transform
trajectory = []

#carrega os dados do arquivo
DIR = '/content/drive/MyDrive/LIDAR/KITTI-Sequence'

subDIR = sorted(os.listdir(DIR))
for i, DIRs in enumerate(subDIR[:-1]):  # iterar as subpastas target
    source = os.path.join(DIR, DIRs) #começa a partir do primeiro
    target = os.path.join(DIR, subDIR[i + 1])

    X = load_points(source)
    Y = load_points(target)

    correspondences = correspondence(X, Y, 0.1)

    transform_matrix = estimate_transform(X, Y, correspondences, 0.1)

    Y_aligned = np.dot(np.column_stack((Y, np.ones(len(Y)))), transform_matrix.T)[:, :3]


    # final trajectory
    trajectory.append(transform_matrix)
final_trajectory = np.array(trajectory)
0

There are 0 answers