I'm trying to gain a better understanding of how hyper-threading enabled multi-core processors work. Let's say I have an app which can be compiled with MPI or OpenMP or MPI+OpenMP. I wonder how it will be scheduled on a CentOS 5.3 box with four Xeon X7560 @ 2.27GHz processors and each processor core has Hyper-Threading enabled.
The processor is numbered from 0 to 63 in /proc/cpuinfo. For my understanding, there are FOUR 8-cores physical processors, the total PHYSICAL CORES are 32, each processor core has Hyper-Threading enabled, the total LOGICAL processors are 64.
Compiled with MPICH2 How many physical cores will be used if I run with mpirun -np 16? Does it get divided up amongst the available 16 PHYSICAL cores or 16 LOGICAL processors ( 8 PHYSICAL cores using hyper-threading)?
compiled with OpenMP How many physical cores will be used if I set OMP_NUM_THREADS=16? Does it will use 16 LOGICAL processors ?
Compiled with MPICH2+OpenMP How many physical cores will be used if I set OMP_NUM_THREADS=16 and run with mpirun -np 16?
Compiled with OpenMPI
OpenMPI has two runtime options
-cpu-set which specifies logical cpus allocated to the job, -cpu-per-proc which specifies number of cpu to use for each process.
If run with mpirun -np 16 -cpu-set 0-15, will it only use 8 PHYSICAL cores ?
If run with mpirun -np 16 -cpu-set 0-31 -cpu-per-proc 2, how it will be scheduled?
Thanks
Jerry
I would hazard a guess that the scheduler will try to keep threads in one process on the same physical cores. So if you had sixteen threads, they would be on the smallest number of physical cores. The reason for this would be cache locality; it would be considered threads from the same process would be more likely to touch the same memory, than threads from different processes. (For example, the costs of cache line invalidation across cores is high, but that cost does not occur for logical processors in the same core).