I have trained on a custom dataset DETR (Detection Transformer) algorithm (Resnet 101 based) thanks to this following Github repo.
The “test.py” file allows to design the output format and by default it consists to save tested images with only detected bounding box display. I would like to modify this script in order to obtain an images and text/JSON file where for each tested image I could obtain/see bounding box, label and confidence (proba).
Here is the initial “Test.py” script :
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
Train and eval functions used in main.py
"""
import math
import os
import cv2
import sys
import argparse
from pathlib import Path
from typing import Iterable
from PIL import Image
import numpy as np
import torch
import util.misc as utils
from models import build_model
from datasets.face import make_face_transforms
import matplotlib.pyplot as plt
import time
def box_cxcywh_to_xyxy(x):
x_c, y_c, w, h = x.unbind(1)
b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
(x_c + 0.5 * w), (y_c + 0.5 * h)]
return torch.stack(b, dim=1)
def rescale_bboxes(out_bbox, size):
img_w, img_h = size
b = box_cxcywh_to_xyxy(out_bbox)
b = b * torch.tensor([img_w, img_h,
img_w, img_h
], dtype=torch.float32)
return b
def get_images(in_path):
img_files = []
for (dirpath, dirnames, filenames) in os.walk(in_path):
for file in filenames:
filename, ext = os.path.splitext(file)
ext = str.lower(ext)
if ext == '.jpg' or ext == '.jpeg' or ext == '.gif' or ext == '.png' or ext == '.pgm':
img_files.append(os.path.join(dirpath, file))
return img_files
def get_args_parser():
parser = argparse.ArgumentParser('Set transformer detector', add_help=False)
parser.add_argument('--lr', default=1e-4, type=float)
parser.add_argument('--lr_backbone', default=1e-5, type=float)
parser.add_argument('--batch_size', default=6, type=int)
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--epochs', default=300, type=int)
parser.add_argument('--lr_drop', default=200, type=int)
parser.add_argument('--clip_max_norm', default=0.1, type=float,
help='gradient clipping max norm')
# Model parameters
parser.add_argument('--frozen_weights', type=str, default=None,
help="Path to the pretrained model. If set, only the mask head will be trained")
# * Backbone
parser.add_argument('--backbone', default='resnet50', type=str,
help="Name of the convolutional backbone to use")
parser.add_argument('--dilation', action='store_true',
help="If true, we replace stride with dilation in the last convolutional block (DC5)")
parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'),
help="Type of positional embedding to use on top of the image features")
# * Transformer
parser.add_argument('--enc_layers', default=6, type=int,
help="Number of encoding layers in the transformer")
parser.add_argument('--dec_layers', default=6, type=int,
help="Number of decoding layers in the transformer")
parser.add_argument('--dim_feedforward', default=2048, type=int,
help="Intermediate size of the feedforward layers in the transformer blocks")
parser.add_argument('--hidden_dim', default=256, type=int,
help="Size of the embeddings (dimension of the transformer)")
parser.add_argument('--dropout', default=0.1, type=float,
help="Dropout applied in the transformer")
parser.add_argument('--nheads', default=8, type=int,
help="Number of attention heads inside the transformer's attentions")
parser.add_argument('--num_queries', default=10, type=int,
help="Number of query slots")
parser.add_argument('--pre_norm', action='store_true')
# * Segmentation
parser.add_argument('--masks', action='store_true',
help="Train segmentation head if the flag is provided")
# # Loss
parser.add_argument('--no_aux_loss', dest='aux_loss', action='store_false',
help="Disables auxiliary decoding losses (loss at each layer)")
# * Matcher
parser.add_argument('--set_cost_class', default=1, type=float,
help="Class coefficient in the matching cost")
parser.add_argument('--set_cost_bbox', default=5, type=float,
help="L1 box coefficient in the matching cost")
parser.add_argument('--set_cost_giou', default=2, type=float,
help="giou box coefficient in the matching cost")
# * Loss coefficients
parser.add_argument('--mask_loss_coef', default=1, type=float)
parser.add_argument('--dice_loss_coef', default=1, type=float)
parser.add_argument('--bbox_loss_coef', default=5, type=float)
parser.add_argument('--giou_loss_coef', default=2, type=float)
parser.add_argument('--eos_coef', default=0.1, type=float,
help="Relative classification weight of the no-object class")
# dataset parameters
parser.add_argument('--dataset_file', default='face')
parser.add_argument('--data_path', type=str)
parser.add_argument('--data_panoptic_path', type=str)
parser.add_argument('--remove_difficult', action='store_true')
parser.add_argument('--output_dir', default='',
help='path where to save the results, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--thresh', default=0.5, type=float)
return parser
@torch.no_grad()
def infer(images_path, model, postprocessors, device, output_path):
model.eval()
duration = 0
for img_sample in images_path:
filename = os.path.basename(img_sample)
print("processing...{}".format(filename))
orig_image = Image.open(img_sample)
w, h = orig_image.size
transform = make_face_transforms("val")
dummy_target = {
"size": torch.as_tensor([int(h), int(w)]),
"orig_size": torch.as_tensor([int(h), int(w)])
}
image, targets = transform(orig_image, dummy_target)
image = image.unsqueeze(0)
image = image.to(device)
conv_features, enc_attn_weights, dec_attn_weights = [], [], []
hooks = [
model.backbone[-2].register_forward_hook(
lambda self, input, output: conv_features.append(output)
),
model.transformer.encoder.layers[-1].self_attn.register_forward_hook(
lambda self, input, output: enc_attn_weights.append(output[1])
),
model.transformer.decoder.layers[-1].multihead_attn.register_forward_hook(
lambda self, input, output: dec_attn_weights.append(output[1])
),
]
start_t = time.perf_counter()
outputs = model(image)
end_t = time.perf_counter()
outputs["pred_logits"] = outputs["pred_logits"].cpu()
outputs["pred_boxes"] = outputs["pred_boxes"].cpu()
probas = outputs['pred_logits'].softmax(-1)[0, :, :-1]
# keep = probas.max(-1).values > 0.85
keep = probas.max(-1).values > args.thresh
bboxes_scaled = rescale_bboxes(outputs['pred_boxes'][0, keep], orig_image.size)
probas = probas[keep].cpu().data.numpy()
for hook in hooks:
hook.remove()
conv_features = conv_features[0]
enc_attn_weights = enc_attn_weights[0]
dec_attn_weights = dec_attn_weights[0].cpu()
# get the feature map shape
h, w = conv_features['0'].tensors.shape[-2:]
if len(bboxes_scaled) == 0:
continue
img = np.array(orig_image)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
for idx, box in enumerate(bboxes_scaled):
bbox = box.cpu().data.numpy()
bbox = bbox.astype(np.int32)
bbox = np.array([
[bbox[0], bbox[1]],
[bbox[2], bbox[1]],
[bbox[2], bbox[3]],
[bbox[0], bbox[3]],
])
bbox = bbox.reshape((4, 2))
cv2.polylines(img, [bbox], True, (0, 255, 0), 2)
# img_save_path = os.path.join(output_path, filename)
# cv2.imwrite(img_save_path, img)
cv2.imshow("img", img)
cv2.waitKey()
infer_time = end_t - start_t
duration += infer_time
print("Processing...{} ({:.3f}s)".format(filename, infer_time))
avg_duration = duration / len(images_path)
print("Avg. Time: {:.3f}s".format(avg_duration))
if __name__ == "__main__":
parser = argparse.ArgumentParser('DETR training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
device = torch.device(args.device)
model, _, postprocessors = build_model(args)
if args.resume:
checkpoint = torch.load(args.resume, map_location='cpu')
model.load_state_dict(checkpoint['model'])
model.to(device)
image_paths = get_images(args.data_path)
infer(image_paths, model, postprocessors, device, args.output_dir)
For the image display I’ve already tried to add the probability display with “ probas[keep]” for each bounding box but it wasn’t successful :
img = np.array(orig_image)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
for idx, box in enumerate(bboxes_scaled):
bbox = box.cpu().data.numpy()
bbox = bbox.astype(np.int32)
bbox = np.array([
[bbox[0], bbox[1]],
[bbox[2], bbox[1]],
[bbox[2], bbox[3]],
[bbox[0], bbox[3]],
])
bbox = bbox.reshape((4, 2))
cv2.polylines(img, [bbox], probas[keep], True, (0, 255, 0), 2)
After long researches I couldn’t find script/solutions to obtain proper DETR results presentation. Is there any solution based on that script to obtain such results ?