I would like to know how to write a formula that would identify/display records of string/object data type on a Pandas DataFrame that contains leading or trailing spaces.
The purpose for this is to get an audit on a Jupyter notebook of such records before applying any strip functions.
The goal is for the script to identify these records automatically without having to type the name of the columns manually. The scope should be any column of str/object data type that contains a value that includes either a leading or trailing spaces or both.
Please notice. I would like to see the resulting output in a dataframe format.
Thank you!
You can use:
or with a regex:
Example:
However, this is likely not faster than directly stripping the spaces:
updated answer
To detect the columns with leading/traiing spaces, you can use:
example on the provided link: