Regarding documents of GPFlow2.8.1, It looks there is no way to use ARD in gpflow.kernels.RBF(SquaredExponential). Is it not possible to add ARD settings in RBF?
Following are the current code.(I use gpflow in Trisete)
kernel = gpflow.kernels.RBF()
gpr = gpflow.models.GPR((past_query_points, past_observations), kernel)
gpflow.set_trainable(gpr.likelihood, True)
gpr.likelihood.variance.assign(1e-5)
model = GaussianProcessRegression(gpr)
print("Before optimize hyperparameters of GPR")
gpflow.utilities.print_summary(gpr)
model.optimize(dataset)
print("After optimize hyperparameters of GPR")
gpflow.utilities.print_summary(gpr)
I tried
kernel = gpflow.kernels.RBF(ARD=TRUE)
but it was error.
In gpflow 2.9.0, you just add two args and a single **kwargs:
Check this.
Here is an example:
In this code, I activated the ARD for all dimensions.