How can I plot a list returned by the mathematica solution to in bounded integer equations

1.9k views Asked by At

So I have a set of bounded diophantine equations that specify lines on the plane. I want to make mathematica plot the intersection of two of these equations so I can see what they look like.

So far I have something like:

Solve[0 < x - y < 3 && -1 < 2 x - y < 2, {x, y}, Integers]

which returns some structure like:

{{x -> -2, y -> -4}, {x -> -1, y -> -3}, {x -> -1, y -> -2}, {x -> 0, y -> -1}}

but how can I now make mathematica plot this so I can see the resulting shape. Preferably I would like the plot to consider every 'point' to be a 1x1 square.

Also, I wonder if there is a better way to do such things. Thanks.

2

There are 2 answers

3
kglr On BEST ANSWER

Define the data you wish to plot by transforming the list Solve[] returns. This can done as

 data = {x, y} /. Solve[0 < x - y < 3 && -1 < 2 x - y < 2, {x, y}, Integers]

More generally, you can make Solve return the solution in a list format (rather than as a set of rules) using the following trick:

 data = Solve[0 < x - y < 3 && -1 < 2 x - y < 2, {x, y}, Integers] /. Rule[a_,b_]->b

For plotting, among many alternatives, you can use ListPlot as

ListPlot[data, PlotMarkers -> {Style["\[FilledSquare]", FontSize -> 16]}]

to get the following output

output image

You can further refine it using many styling and other options of ListPlot. For example, you can join the points

ListPlot[data, PlotMarkers -> {Style["\[FilledSquare]", FontSize -> 16]}, 
 Joined -> True]

to get

joined plot

EDIT: To play with the marker placement and size there are several alternatives. Using ListPlot you can get what you need in either of the two ways:

 (* Alternative 1: use fontsize to change the marker size *)
 lp1 := ListPlot[{#} & /@ #1, 
 PlotMarkers -> {Style["\[FilledSquare]", FontSize -> Scaled[#2]]},
 AspectRatio -> 1, AxesOrigin -> {0, 0}, 
 PlotRange -> {{-5, 1}, {-5, 1}}, 
 PlotStyle -> Hue /@ RandomReal[1, {Length@#1}], 
 Epilog -> {GrayLevel[.3], PointSize[.02], Point@#1, Thick, 
  Line@#1}, Frame -> True, FrameTicks -> All] &;
 (* usage example *)
 lp1 @@ {data, .30}

 (* Alternative 2: use the second parameter of PlotMarkers to control scaled size *)
 lp2 := ListPlot[{#} & /@ #1, 
 PlotMarkers -> {Graphics@{Rectangle[]}, #2}, AspectRatio -> 1, 
 AxesOrigin -> {0, 0}, PlotRange -> {{-5, 1}, {-5, 1}}, 
 PlotStyle -> Hue /@ RandomReal[1, {Length@#1}], 
 Epilog -> {GrayLevel[.3], PointSize[.02], Point@#1, Thick, 
 Line@#1}, Frame -> True, FrameTicks -> All] &
 (* usage example *)
 lp2 @@ {data, 1/5.75}

In both cases, you need to use Epilog, otherwise the lines joining points are occluded by the markers. Both alternatives produce the following output:

listplot with markers

Alternatively, you can use Graphics, RegionPlot, ContourPlot, BubbleChart with appropriate transformations of data to get results similar to the one in ListPlot output above.

Using Graphics primitives:

 (* data transformation to define the regions *)
 trdataG[data_, size_] :=  data /. {a_, b_} :> 
         {{a - size/2, b - size/2}, {a + size/2, b + size/2}};
 (* plotting function *)
 gr := Graphics[
      {
      {Hue[RandomReal[]], Rectangle[##]} & @@@ trdataG @@ {#1, #2}, 
      GrayLevel[.3], PointSize[.02], Thick, Point@#1, Line@#1}, 
      PlotRange -> {{-5, 1}, {-5, 1}
      }, 
      PlotRangePadding -> 0, Axes -> True, AxesOrigin -> {0, 0}, 
      Frame -> True, FrameTicks -> All] &
 (* usage example *)
 gr @@ {data, .99}

Using BubbleChart:

 (* Transformation of data to a form that BubbleChart expects *)
 dataBC[data_] := data /. {a_, b_} :> {a, b, 1};
 (* custom markers *)
 myMarker[size_][{{xmin_, xmax_}, {ymin_, ymax_}}, ___] :=
      {EdgeForm[], Rectangle[{(1/2) (xmin + xmax) - size/2, (1/2) (ymin + ymax) - 
       size/2}, {(1/2) (xmin + xmax) + size/2, (1/2) (ymin + ymax) + size/2}]};
 (* charting function *)
 bc := BubbleChart[dataBC[#1], ChartElementFunction -> myMarker[#2], 
       ChartStyle -> Hue /@ RandomReal[1, {Length@#1}], Axes -> True, 
       AxesOrigin -> {0, 0}, PlotRange -> {{-5, 1}, {-5, 1}}, 
       PlotRangePadding -> 0, AspectRatio -> 1, FrameTicks -> All, 
       Epilog -> {GrayLevel[.3], PointSize[.02], Point@#1, Thick, Line@#1}] &
 (* usage example *)
 bc @@ {data, .99}

Using RegionPlot:

 (* Transformation of data to a form that RegionPlot expects *)
  trdataRP[data_, size_] :=  data /. {a_, b_} :> 
            a - size/2 <= x <= a + size/2 && b - size/2 <= y <= b + size/2
 (* charting function *)
 rp := RegionPlot[Evaluate@trdataRP[#1, #2], {x, -5, 1}, {y, -5, 1}, 
          AspectRatio -> 1, Axes -> True, AxesOrigin -> {0, 0}, 
          PlotRange -> {{-5, 1}, {-5, 1}}, 
          PlotStyle -> Hue /@ RandomReal[1, {Length@#1}], FrameTicks -> All, 
          PlotPoints -> 100, BoundaryStyle -> None, 
          Epilog -> {GrayLevel[.3], PointSize[.02], Point@#1, Thick, Line@#1}] &
 (* usage example *)
 rp @@ {data, .99}

Using ContourPlot:

 (* Transformation of data to a form that ContourPlot expects *)
 trdataRP[data_, size_] :=   data /. {a_, b_} :> 
            a - size/2 <= x <= a + size/2 && b - size/2 <= y <= b + size/2;
 trdataCP[data_, size_] := Which @@ Flatten@
           Thread[{trdataRP[data, size], Range@Length@data}];
 (* charting function *)
 cp := ContourPlot[trdataCP[#1, #2], {x, -5, 1}, {y, -5, 1}, 
             AspectRatio -> 1, Axes -> True, AxesOrigin -> {0, 0}, 
             PlotRange -> {{-5, 1}, {-5, 1}}, FrameTicks -> All, 
             ExclusionsStyle -> None, PlotPoints -> 100, 
             ColorFunction -> Hue, 
             Epilog -> {GrayLevel[.3], PointSize[.02], Point@#1, Thick, Line@#1}] &
 (* usage example *)
 cp @@ {data, .99}
0
Nasser On

may be

sol = Solve[0 < x - y < 3 && -1 < 2 x - y < 2, {x, y}, Integers];
pts = Cases[sol, {_ -> n_, _ -> m_} :> {n, m}];
ListPlot[pts, Mesh -> All, Joined -> True, AxesOrigin -> {0, 0}, 
 PlotMarkers -> {Automatic, 10}]

enter image description here

Can also extract the points to plot using

{#[[1, 2]], #[[2, 2]]} & /@ sol