I have the following code:
modelClf = AdaBoostRegressor(base_estimator=LinearRegression(), learning_rate=2, n_estimators=427, random_state=42)
modelClf.fit(X_train, y_train)
While trying to interpret and improve the results, I wanted to see the feature importances, however I get an error saying that linear regressions don't really do that kind of thing.
Alright, sounds reasonable, so I tried using .coef_ since it should work for linear regressions, but it, in place, turned out incompatible with the adaboost regressor.
Is there any way to find the feature importances or is it impossible when adaboost it used on a linear regression?
Checked with below code, there is an attribute for feature importance:
Output: You can see feature 2 is more important as Y is nothing but half of it (as the data is created in such way).