I have an Django application with Apache Prometheus monitoring and model called Sample
.
I want to monitor Sample.objects.count() metric and cache this value for concrete time interval to avoid costly COUNT(*) queries in database.
From this tutorial https://github.com/prometheus/client_python#custom-collectors i read that i need to write custom collector.
What is best approach to achieve this?
Is there any way in django to
get Sample.objects.count()
cached value and update it after K seconds?
I also use Redis in my application. Should i store this value there?
Should i make separate thread to update Sample.objects.count()
cache value?
First thing to note is that you don't really need to cache the result of a count(*) query.
Though different RDBMS handle count operations differently, they are slow across the board for large tables. But one thing they have in common is that there is an alternative to SELECT COUNT(*) provided by the RDBMS which is in fact a cached result. Well sort of.
You haven't mentioned what your RDBMS is so let's see how it is in the popular ones used wtih Django
mysql
Provided you have a primary key on your table and you are using MyISAM. SELECT COUNT() is really fast on mysql and scales well. But chances are that you are using Innodb. And that's the right storage engine for various reasons. Innodb is transaction aware and can't handle COUNT() as well as MyISAM and the query slows down as the table grows.
the count query on a table with 2M records took 0.2317 seconds. The following query took 0.0015 seconds
but it reported a value of 1997289 instead of 2 million but close enough!
So you don't need your own caching system.
Sqlite
Sqlite COUNT(*) queries aren't really slow but it doesn't scale either. As the table size grows the speed of the count query slows down. Using a table similar to the one used in mysql,
SELECT COUNT(*) FROM for_count
required 0.042 seconds to complete.There isn't a short cut. The
sqlite_master
table does not provide row counts. Neither doespragma table_info
You need your own system to cache the result of SELECT COUNT(*)
Postgresql
Despite being the most feature rich open source RDBMS, postgresql isn't good at handling count(*), it's slow and doesn't scale very well. In other words, no different from the poor relations!
The count query took 0.194 seconds on postgreql. On the other hand the following query took 0.003 seconds.
You don't need your own caching system.
SQL Server
The COUNT query on SQL server took 0.160 seconds on average but it fluctuated rather wildly. For all the databases discussed here the first count(*) query was rather slow but the subsequent queries were faster because the file was cached by the operating system.
I am not an expert on SQL server so before answering this question, I didn't know how to look up the row count using schema info. I found this Q&A helpfull. One of them I tried produced the result in 0.004 seconds
You dont' need your own caching system.
Integrate into Django
As can be seen, all databases considered except sqlite provide a built in 'Cached query count' There isn't a need for us to create one of our own. It's a simple matter of creating a customer manager to make use of this functionality.
The above example is for postgresql, but the same thing can be used for mysql or sql server by simply changing the query into one of those listed above.
Prometheus
How to plug this into django prometheus? I leave that as an exercise.