Could someone verify and tell me if the following code is valid ? I feel lines 160-162 might be wrong.
I have comments to indicate the line number.
the full code is taken from here C++ Binary Search tree
class BinarySearchTree
{
private:
struct tree_node
{
tree_node* left;
tree_node* right;
int data;
};
tree_node* root;
public:
BinarySearchTree()
{
root = NULL;
}
bool isEmpty() const { return root==NULL; }
void print_inorder();
void inorder(tree_node*);
void print_preorder();
void preorder(tree_node*);
void print_postorder();
void postorder(tree_node*);
void insert(int);
void remove(int);
};
void BinarySearchTree::remove(int d)
{
//Locate the element
bool found = false;
if(isEmpty())
{
cout<<" This Tree is empty! "<<endl;
return;
}
tree_node* curr;
tree_node* parent;
curr = root;
while(curr != NULL)
{
if(curr->data == d)
{
found = true;
break;
}
else
{
parent = curr;
if(d>curr->data) curr = curr->right;
else curr = curr->left;
}
}
if(!found)
{
cout<<" Data not found! "<<endl;
return;
}
// 3 cases :
// 1. We're removing a leaf node
// 2. We're removing a node with a single child
// 3. we're removing a node with 2 children
// Node with single child
if((curr->left == NULL && curr->right != NULL)|| (curr->left != NULL
&& curr->right == NULL))
{
if(curr->left == NULL && curr->right != NULL)
{
if(parent->left == curr)
{
parent->left = curr->right;
delete curr;
}
else
{
parent->right = curr->right;
delete curr;
}
}
else // left child present, no right child
{
if(parent->left == curr)
{
parent->left = curr->left;
delete curr;
}
else
{
parent->right = curr->left;
delete curr;
}
}
return;
}
//We're looking at a leaf node
if( curr->left == NULL && curr->right == NULL)
{
if(parent->left == curr) parent->left = NULL;
else parent->right = NULL;
delete curr;
return;
}
//Node with 2 children
// replace node with smallest value in right subtree
if (curr->left != NULL && curr->right != NULL)
{
tree_node* chkr;
chkr = curr->right;
if((chkr->left == NULL) && (chkr->right == NULL))
{
curr = chkr; // <----------- line 160
delete chkr;
curr->right = NULL; // <------------------ line 162
}
else // right child has children
{
//if the node's right child has a left child
// Move all the way down left to locate smallest element
if((curr->right)->left != NULL)
{
tree_node* lcurr;
tree_node* lcurrp;
lcurrp = curr->right;
lcurr = (curr->right)->left;
while(lcurr->left != NULL)
{
lcurrp = lcurr;
lcurr = lcurr->left;
}
curr->data = lcurr->data;
delete lcurr;
lcurrp->left = NULL;
}
else
{
tree_node* tmp;
tmp = curr->right;
curr->data = tmp->data;
curr->right = tmp->right;
delete tmp;
}
}
return;
}
}
curr and chkr point to the same location. By deleting chkr can the same location still be accessed by curr ? Or is this alright because neither of them were actually allocated any memory using the new statement.
There is something really dodgy about the code. I feel that there is a memory leak too. I am a working professional looking to refresh on my C++ basics. Thank you for any help.
I gave a glance at the code around the region you mentioned. I believe you are correct as this is a bug.
In this code section, curr and chkr are both declared as a pointer to a tree_node instance. While running
curr = chkr
, pointer value for chkr is wirtten to curr and thus point curr to instance chkr is pointing to. Bydelete chkr
, the instance is destroyed and garbage collected. Thus curr is now pointing to a non-existed object who is out of life. This IS a dangling pointer by definition, if I remember correctly.If I'm all correct above and the understanding for that particular chunk, the following is the fix for this:
to replace
Regarding memory leak. Sorry, I did not read the whole code. It appears msram's code should be merely for displaying the correct logic. That is a lot more extra information for that purpose though.