Convert processed format with stm into dtm (Structural topic modeling)

236 views Asked by At

I have used the textProcessor and the prepDocuments functions from the stm package to clean a corpus. Now I would like to convert the resulting object (list of indices plus vocabulary) into a standard document-term matrix (or quanteda document-feature matrix) so that I can apply topicmodels function LDA and compare the resulting topics with stm.

processed <- textProcessor(poliblog5k.docs,
                           metadata = poliblog5k.meta,
                           language = "en")

prepped <- prepDocuments(processed$documents,
                         processed$vocab,
                         processed$meta,
                         lower.thresh = 20)

LDA(processed)
LDA(prepped)

> Error in x != vector(typeof(x), 1L)

LDA(processed$documents)
LDA(prepped$documents)

> Error in !all.equal(x$v, as.integer(x$v)) 
1

There are 1 answers

0
Ignacio Toledo On BEST ANSWER

I had the same problem. What I did is to transform the output from prepDocuments to a one-term-per-document-per-row format and then apply the cast_dfm function from the package {tidytext}.

library(topicmodels)
library(tidyverse)
library(tidytext)
library(magrittr)
library(stm)

stm_to_dtm <- function(out){
  tibble(out_doc = out$documents %>% map(t)) %>%
    mutate(out_doc = out_doc %>% map(set_colnames, c("term", "n"))) %>% 
    mutate(out_doc = out_doc %>% map(as_tibble)) %>% 
    rownames_to_column(var = "document") %>% 
    unnest(cols = out_doc) %>% 
    mutate(term = out$vocab[term]) %>% 
    cast_dtm(document, term, n)
}

temp<-textProcessor(documents=gadarian$open.ended.response,metadata=gadarian)
meta<-temp$meta
vocab<-temp$vocab
docs<-temp$documents
out <- prepDocuments(docs, vocab, meta)

prepped <- stm_to_dtm(out)
> prepped
<<DocumentTermMatrix (documents: 341, terms: 462)>>
Non-/sparse entries: 3149/154393
Sparsity           : 98%
Maximal term length: 11
Weighting          : term frequency (tf)

> LDA(prepped, k = 5)
A LDA_VEM topic model with 5 topics.