I'm fitting ARIMA(0,0,1)
model in R
with one exogenous variable.
After fitting, I tested the error term and it's highly non-normal (it's like t-distributed
error):
My question is: is there any package in R
that can fit ARIMA
model with t-distributed
error? Or it there any other remedy to this problem?
The data is log-transformed data already so I guess I cannot perform another data transformation.
Thank you for your help in advance!
Here is the data:
dput(x)
c(1.098612289, 0, 1.791759469, 1.386294361, 0, 2.079441542, 2.772588722,
2.564949357, 3.737669618, 3.761200116, 3.891820298, 3.555348061,
2.944438979, 2.772588722, 1.791759469, 2.772588722, 2.564949357,
3.258096538, 3.295836866, 2.890371758, 2.772588722, 2.197224577,
4.077537444, 4.828313737, 5.855071922, 6.620073207, 7.561641746,
7.887208586, 7.557472902, 6.747586527, 5.583496309, 4.465908119,
3.526360525, 2.890371758, 2.564949357, 2.397895273, 2.302585093,
0.693147181, 1.386294361, 0.693147181, 0.693147181, 0, 0, 1.098612289,
0.693147181, 0, 0, 0, 0, 0, 0, 0, 0.693147181, 0.693147181, 0,
0, 0.693147181, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0.693147181, 0, 0.693147181, 0.693147181, 1.386294361,
0.693147181, 1.098612289, 2.564949357, 3.555348061, 4.744932128,
4.615120517, 4.934473933, 4.779123493, 5.308267697, 5.303304908,
5.416100402, 5.379897354, 5.153291594, 5.081404365, 4.927253685,
4.86753445, 4.356708827, 4.060443011, 3.891820298, 3.091042453,
3.091042453, 2.995732274, 2.302585093, 2.079441542, 1.609437912,
0.693147181, 0, 0)
dput(y)
c(-2.760818612, -0.969058209, -1.374522756, -2.760817117, -0.681374268,
0.011775716, -0.195861406, 0.976866516, 1.000404862, 1.131034014,
0.794568131, 0.183662413, 0.011814959, -0.96901336, 0.011818696,
-0.195818426, 0.497333426, 0.535078613, 0.129616682, 0.01183645,
-0.5635262, 1.316797505, 2.067596972, 3.094420195, 3.859561475,
4.801489346, 5.127554079, 4.798176537, 3.988449441, 2.824408827,
1.706836735, 0.767295318, 0.131309734, -0.19411042, -0.361162633,
-0.456471128, -2.065908853, -1.372761111, -2.065908104, -2.065907917,
-2.759055098, -2.759055098, -1.660442435, -2.065907356, -2.759054536,
-2.759054536, -2.759054536, -2.759054536, -2.759054536, -2.759054536,
-2.759054536, -2.065907168, -2.065906981, -2.759054162, -2.759054162,
-2.065906794, -2.759053975, -2.759053975, -2.759053975, -2.759053975,
-2.759053975, -2.759053975, -2.759053975, -2.759053975, -2.759053975,
-2.759053975, -2.759053975, -2.759053975, -2.759053975, -2.759053975,
-2.759053975, -2.759053975, -2.759053975, -2.759053975, -2.065906607,
-2.759053787, -2.06590642, -2.065906232, -1.37275849, -2.065905484,
-1.660440001, -0.194100686, 0.796304383, 1.985909791, 1.856116899,
2.17549615, 2.020167801, 2.549349637, 2.544424292, 2.657261726,
2.621099122, 2.394525569, 2.3226683, 2.168543275, 2.108848197,
1.598036993, 1.301781851, 1.133168127, 0.332394215, 0.332398148,
0.237091526, -0.456053969, -0.679196209, -1.149199089, -2.065489634,
-2.758636814, -2.758636814, -2.758636814)
And my code:
y1 = y
x_data1 = matrix(c(x), ncol = 1)
ts_mod1 = arima(y1, order = c(0,0,1), xreg = x_data1)
ts_res1 = ts_mod1$residuals
qqnorm(ts_res1, main = "", cex.axis = 1.2, cex.lab = 1.45)
qqline(ts_res1, col = "red")
There is another package in R called Autobox. It is available from autobox.com(I am affiliated with it).
The standardized plot shows that X is related to Y.
Model with differencing, the x variable and 3 outliers. Note the .257 coefficient is much lower.
By testing for variance change and using Weighted Least Squares(GLM) we have identified a change in the variance beginning at period 44. See the paper here.
Residuals