I have to compute in Java the same result as Excel NORM.S.INV
.
(actually using LOI.NORMALE.STANDARD.INVERSE
in French, that's NORM.S.INV
in English)
I use org.apache.commons.math3.special.Erf.erfInv
this way:
return Math.sqrt(2) * Erf.erfInv(2 * p - 1);
But when p
is small enough (around 1e-17
), erfInv
returns Infinity
, because when p
is that small, 2 * p -1
is equal to -1
.
So I created a modified erfInv
function, preventing this kind of problem by turning the equations around, and it works well, well, up to a point.
public double inverseCumulativeProbability(final double p) throws OutOfRangeException {
if (p < 0.0 || p > 1.0) {
throw new OutOfRangeException(Double.valueOf(p), Double.valueOf(0), Double.valueOf(1));
}
final boolean precisionError = p > 0 && Double.compare(1 - 2 * p, 1) == 0;
return FastMath.sqrt(2) * (precisionError ? this.erfInvModified(2 * p) : Erf.erfInv(2 * p - 1));
}
/**
* Rewrite of {@link Erf#erfInv(double)} using a parameter which has yet to be subtracted 1, which has not been
* done because of the error ε -1 = -1
*
* @param ε a very small value, which has yet to be subtracted 1
* @return the correct value
*/
private double erfInvModified(final double ε) {
// the original writing [ (1 - (ε - 1)) × (1 + ( ε - 1)) ] gave a result of 0 instead of [ 2 × ε ]
double w = -FastMath.log(2 * ε);
double p = this.__originalCode(w);
// rounding equivalent to the original writing [ p × (ε - 1) ]
return -p;
}
/**
* This part is copied unmodified from the original erfInv method
*/
private double __originalCode(double w) {
double p;
if (w < 6.25) {
w = w - 3.125;
p = -3.6444120640178196996e-21;
p = -1.685059138182016589e-19 + p * w;
p = 1.2858480715256400167e-18 + p * w;
p = 1.115787767802518096e-17 + p * w;
p = -1.333171662854620906e-16 + p * w;
p = 2.0972767875968561637e-17 + p * w;
p = 6.6376381343583238325e-15 + p * w;
p = -4.0545662729752068639e-14 + p * w;
p = -8.1519341976054721522e-14 + p * w;
p = 2.6335093153082322977e-12 + p * w;
p = -1.2975133253453532498e-11 + p * w;
p = -5.4154120542946279317e-11 + p * w;
p = 1.051212273321532285e-09 + p * w;
p = -4.1126339803469836976e-09 + p * w;
p = -2.9070369957882005086e-08 + p * w;
p = 4.2347877827932403518e-07 + p * w;
p = -1.3654692000834678645e-06 + p * w;
p = -1.3882523362786468719e-05 + p * w;
p = 0.0001867342080340571352 + p * w;
p = -0.00074070253416626697512 + p * w;
p = -0.0060336708714301490533 + p * w;
p = 0.24015818242558961693 + p * w;
p = 1.6536545626831027356 + p * w;
}
else if (w < 16.0) {
w = FastMath.sqrt(w) - 3.25;
p = 2.2137376921775787049e-09;
p = 9.0756561938885390979e-08 + p * w;
p = -2.7517406297064545428e-07 + p * w;
p = 1.8239629214389227755e-08 + p * w;
p = 1.5027403968909827627e-06 + p * w;
p = -4.013867526981545969e-06 + p * w;
p = 2.9234449089955446044e-06 + p * w;
p = 1.2475304481671778723e-05 + p * w;
p = -4.7318229009055733981e-05 + p * w;
p = 6.8284851459573175448e-05 + p * w;
p = 2.4031110387097893999e-05 + p * w;
p = -0.0003550375203628474796 + p * w;
p = 0.00095328937973738049703 + p * w;
p = -0.0016882755560235047313 + p * w;
p = 0.0024914420961078508066 + p * w;
p = -0.0037512085075692412107 + p * w;
p = 0.005370914553590063617 + p * w;
p = 1.0052589676941592334 + p * w;
p = 3.0838856104922207635 + p * w;
}
else if (!Double.isInfinite(w)) {
w = FastMath.sqrt(w) - 5.0;
p = -2.7109920616438573243e-11;
p = -2.5556418169965252055e-10 + p * w;
p = 1.5076572693500548083e-09 + p * w;
p = -3.7894654401267369937e-09 + p * w;
p = 7.6157012080783393804e-09 + p * w;
p = -1.4960026627149240478e-08 + p * w;
p = 2.9147953450901080826e-08 + p * w;
p = -6.7711997758452339498e-08 + p * w;
p = 2.2900482228026654717e-07 + p * w;
p = -9.9298272942317002539e-07 + p * w;
p = 4.5260625972231537039e-06 + p * w;
p = -1.9681778105531670567e-05 + p * w;
p = 7.5995277030017761139e-05 + p * w;
p = -0.00021503011930044477347 + p * w;
p = -0.00013871931833623122026 + p * w;
p = 1.0103004648645343977 + p * w;
p = 4.8499064014085844221 + p * w;
}
else {
p = Double.POSITIVE_INFINITY;
}
return p;
}
This produces accurate results, very near to those given by NORM.S.INV
, but they slowly diverge as p is becoming smaller:
p Excel modified erfInv
1E-30 11.464 11.458
1E-40 13.311 11.642
1E-50 14.933 -49.694
1E-75 18.377 -19628.2
1E-100 21.273 -705825.1
I see no error in my logic, the only source of error I can think of is the third polynomial part in apache library when w
is getting too high… !
I tried using BigDecimal, but the divergence is the same, it is not a rounding problem…
What advice can you give me ? An other library to use maybe ?
Thanks for your help…