I am developing a tensorflow serving client/server application by using chatbot-retrieval project.
My code has two parts, namely serving part and client part.
Below is the code snippet for the serving parts.
def get_features(context, utterance):
context_len = 50
utterance_len = 50
features = {
"context": context,
"context_len": tf.constant(context_len, shape=[1,1], dtype=tf.int64),
"utterance": utterance,
"utterance_len": tf.constant(utterance_len, shape=[1,1], dtype=tf.int64),
}
return features
def my_input_fn(estimator, input_example_tensor ):
feature_configs = {
'context':tf.FixedLenFeature(shape=[50], dtype=tf.int64),
'utterance':tf.FixedLenFeature(shape=[50], dtype=tf.int64)
}
tf_example = tf.parse_example(input_example_tensor, feature_configs)
context = tf.identity(tf_example['context'], name='context')
utterance = tf.identity(tf_example['utterance'], name='utterance')
features = get_features(context, utterance)
return features
def my_signature_fn(input_example_tensor, features, predictions):
feature_configs = {
'context':tf.FixedLenFeature(shape=[50], dtype=tf.int64),
'utterance':tf.FixedLenFeature(shape=[50], dtype=tf.int64)
}
tf_example = tf.parse_example(input_example_tensor, feature_configs)
tf_context = tf.identity(tf_example['context'], name='tf_context_utterance')
tf_utterance = tf.identity(tf_example['utterance'], name='tf_utterance')
default_graph_signature = exporter.regression_signature(
input_tensor=input_example_tensor,
output_tensor=tf.identity(predictions)
)
named_graph_signatures = {
'inputs':exporter.generic_signature(
{
'context':tf_context,
'utterance':tf_utterance
}
),
'outputs':exporter.generic_signature(
{
'scores':predictions
}
)
}
return default_graph_signature, named_graph_signatures
def main():
##preliminary codes here##
estimator.fit(input_fn=input_fn_train, steps=100, monitors=[eval_monitor])
estimator.export(
export_dir = FLAGS.export_dir,
input_fn = my_input_fn,
use_deprecated_input_fn = True,
signature_fn = my_signature_fn,
exports_to_keep = 1
)
Below is the code snippet for the client part.
def tokenizer_fn(iterator):
return (x.split(" ") for x in iterator)
vp = tf.contrib.learn.preprocessing.VocabularyProcessor.restore(FLAGS.vocab_processor_file)
input_context = "biz banka kart farkli bir banka atmsinde para"
input_utterance = "farkli banka kart biz banka atmsinde para"
context_feature = np.array(list(vp.transform([input_context])))
utterance_feature = np.array(list(vp.transform([input_utterance])))
context_tensor = tf.contrib.util.make_tensor_proto(context_feature, shape=[1, context_feature.size])
utterance_tensor = tf.contrib.util.make_tensor_proto(context_feature, shape=[1, context_feature.size])
request.inputs['context'].CopyFrom(context_tensor)
request.inputs['utterance'].CopyFrom(utterance_tensor)
result_counter.throttle()
result_future = stub.Predict.future(request, 5.0) # 5 seconds
result_future.add_done_callback(
_create_rpc_callback(label[0], result_counter))
return result_counter.get_error_rate()
Both of the serving and client parts builds with no error. After running the serving application and then the client application I get the following strange error propogated to the client application when the rpc call completes.
Below is the error I get when rpc call completes
AbortionError(code=StatusCode.INVALID_ARGUMENT, details="You must feed a value for placeholder tensor 'input_example_tensor' with dtype string and shape [1]
[[Node: input_example_tensor = Placeholder[_output_shapes=[[1]], dtype=DT_STRING, shape=[1], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]")
The error is strange since there seems to be no way to feed the placeholder from the client application.
How can I provide data for the placeholder 'input_example_tensor' if I am accessing the model through tensorflow serving?
ANSWER: (I posted my answer here since I couldn't post it as an answer due to lack of StackOverflow badges. Anyone who is volunteer to submit it as his/her answer to the question is more than welcome. I will approve it as the answer.)
I could resolve the problem by using the option use_deprecated_input_fn = False in estimator.export function and change the input signatures accordingly.
Below is the final code which is running with no problem.
def get_features(input_example_tensor, context, utterance):
context_len = 50
utterance_len = 50
features = {
"my_input_example_tensor": input_example_tensor,
"context": context,
"context_len": tf.constant(context_len, shape=[1,1], dtype=tf.int64),
"utterance": utterance,
"utterance_len": tf.constant(utterance_len, shape=[1,1], dtype=tf.int64),
}
return features
def my_input_fn():
input_example_tensor = tf.placeholder(tf.string, name='tf_example_placeholder')
feature_configs = {
'context':tf.FixedLenFeature(shape=[50], dtype=tf.int64),
'utterance':tf.FixedLenFeature(shape=[50], dtype=tf.int64)
}
tf_example = tf.parse_example(input_example_tensor, feature_configs)
context = tf.identity(tf_example['context'], name='context')
utterance = tf.identity(tf_example['utterance'], name='utterance')
features = get_features(input_example_tensor, context, utterance)
return features, None
def my_signature_fn(input_example_tensor, features, predictions):
default_graph_signature = exporter.regression_signature(
input_tensor=input_example_tensor,
output_tensor=predictions
)
named_graph_signatures = {
'inputs':exporter.generic_signature(
{
'context':features['context'],
'utterance':features['utterance']
}
),
'outputs':exporter.generic_signature(
{
'scores':predictions
}
)
}
return default_graph_signature, named_graph_signatures
def main():
##preliminary codes here##
estimator.fit(input_fn=input_fn_train, steps=100, monitors=[eval_monitor])
estimator._targets_info = tf.contrib.learn.estimators.tensor_signature.TensorSignature(tf.constant(0, shape=[1,1]))
estimator.export(
export_dir = FLAGS.export_dir,
input_fn = my_input_fn,
input_feature_key ="my_input_example_tensor",
use_deprecated_input_fn = False,
signature_fn = my_signature_fn,
exports_to_keep = 1
)
OP self-solved but couldn't self-answer, so here's their answer:
Problem was fixed by using the option
use_deprecated_input_fn = False
inestimator.export
function and changing the input signatures accordingly: