Why writeRaster(brick()) using RasterLayers with same number of cells result to RasterStack?

149 views Asked by At

I'm using this function to calculate the length of linestring per cell by ID and store in a list, convert each element of the list into a RasterLayer and turn that list into a RasterBrick. Notice that inside the function I use "left_join()" so that all rasters have the same number of cells. However, the final raster converts to RasterStack instead of RasterBrick, why does this happen?

library(tidyverse)
library(sf)
library(raster)
library(purrr)


id <- c("844", "844", "844", "844", "844","844", "844", "844", "844", "844",
        "844", "844", "845", "845", "845", "845", "845","845", "845", "845", 
        "845","845", "845", "845")
lat <- c(-30.6456, -29.5648, -27.6667, -31.5587, -30.6934, -29.3147, -23.0538, 
         -26.5877, -26.6923, -23.40865, -23.1143, -23.28331, -31.6456, -24.5648, 
         -27.6867, -31.4587, -30.6784, -28.3447, -23.0466, -27.5877, -26.8524, 
         -23.8855, -24.1143, -23.5874)
long <- c(-50.4879, -49.8715, -51.8716, -50.4456, -50.9842, -51.9787, -41.2343, 
          -40.2859, -40.19599, -41.64302, -41.58042, -41.55057, -50.4576, -48.8715, 
          -51.4566, -51.4456, -50.4477, -50.9937, -41.4789, -41.3859, -40.2536, 
          -41.6502, -40.5442, -41.4057)
df <- tibble(id, lat, long)


#converting ​to sf
df.sf <- df %>% 
 ​sf::st_as_sf(coords = c("long", "lat"), crs = 4326)

I also have a sf grid created from points:

#creating grid
xy <- sf::st_coordinates(df.sf)

grid = sf::st_make_grid(sf::st_bbox(df.sf),
                       ​cellsize = .1, square = FALSE) %>%
 ​sf::st_as_sf() %>%
 ​dplyr::mutate(cell = 1:nrow(.)) 

#creating raster
r <- raster::raster(grid, res=0.1) 

#creating linestring to each id
df.line <- df.sf %>% 
  dplyr::group_by(id) %>%
  dplyr::summarize() %>%
  sf::st_cast("LINESTRING") 

#build_length_raster <- function(df.line) {

  intersect_list <- by(
    df.line, 
    df.line$id,
    function(id_df) sf::st_intersection(grid, id_df) %>% 
      dplyr::mutate(length = as.numeric(sf::st_length(.))) %>%
      sf::st_drop_geometry()
  ) 
  
  list_length_grid <- purrr::map(intersect_list, function(grid_id) {
    grid_id %>% dplyr::left_join(x=grid, by="cell") %>% 
      dplyr::mutate(length=length) %>%
      dplyr::mutate_if(is.numeric,coalesce,0)
  })

  list_length_raster <- purrr::map(list_length_grid, function(grid_id) {
    raster::rasterize(grid_id, r, field="length", na.rm=F, background=0)
  })

  list_length_raster2 <- unlist(list_length_raster, recursive=F)
  
  raster_brick <- raster::writeRaster(raster::brick(list_length_raster2 ), 
                                      names(list_length_raster2 ), 
                                      bylayer=TRUE, overwrite=TRUE)

#}
1

There are 1 answers

3
Robert Hijmans On BEST ANSWER

You use the argument bylayer=TRUE asking for a separate file for each layer. A RasterBrick can only be created from a single file; hence you get a RasterStack.

Also, because you have a list of RasterLayers, it is more efficient to use stack here instead of brick.

 s <- stack(list_length_raster2 )

This is because a RasterStack essentially is a list or RasterLayers. With brick you would combine all the values into a new structure, and that can be expensive.

And if you want a RasterBrick, do:

 b <- raster::writeRaster(s, "test.tif", overwrite=T)
 b
 #class      : RasterBrick 
 #dimensions : 87, 120, 10440, 2  (nrow, ncol, ncell, nlayers)
 #resolution : 0.1, 0.1  (x, y)
 #extent     : -52.0787, -40.0787, -31.71421, -23.01421  (xmin, xmax, ymin, ymax)
 #crs        : +proj=longlat +datum=WGS84 +no_defs 
 #source     : test.tif 
 #names      :   test.1,   test.2 
 #min values :        0,        0 
 #max values : 21762.09, 11923.31 

Or use terra instead of raster --- That is easier because the terra SpatRaster encompasses raster's RasterLayer, Stack and Brick objects.

Below I show how you may do this with terra (although I am not quite following all the logic of your script; my understanding is that you want to measure, for each grid cell, the length of the lines that cross it). You need terra >= 1.5-29 that you can install with install.packages('terra', repos='https://rspatial.r-universe.dev')

Your example data

id <- c("844", "844", "844", "844", "844","844", "844", "844", "844", "844",
        "844", "844", "845", "845", "845", "845", "845","845", "845", "845", "845","845", "845", "845")
lat <- c(-30.6456, -29.5648, -27.6667, -31.5587, -30.6934, -29.3147, -23.0538, 
         -26.5877, -26.6923, -23.40865, -23.1143, -23.28331, -31.6456, -24.5648, 
         -27.6867, -31.4587, -30.6784, -28.3447, -23.0466, -27.5877, -26.8524, 
         -23.8855, -24.1143, -23.5874)
long <- c(-50.4879, -49.8715, -51.8716, -50.4456, -50.9842, -51.9787, -41.2343, 
          -40.2859, -40.19599, -41.64302, -41.58042, -41.55057, -50.4576, -48.8715, 
          -51.4566, -51.4456, -50.4477, -50.9937, -41.4789, -41.3859, -40.2536, 
          -41.6502, -40.5442, -41.4057)

Create a SpatVector and a SpatRaster

library(terra)    
m <- cbind(object=as.integer(as.factor(id)), part=1, x=long, y=lat)
v <- vect(m, type="lines", att=data.frame(id=unique(id)), crs="+proj=longlat")
r <- rast(v, res=1) # lower resolution for example

Apply the rasterizeGeom method to each line

x <- lapply(1:length(v), 
       \(i) rasterizeGeom(v[i], r, "km")
     )
x <- rast(x) 
names(x) <- v$id

x
#class       : SpatRaster 
#dimensions  : 9, 12, 2  (nrow, ncol, nlyr)
#resolution  : 1, 1  (x, y)
#extent      : -51.9787, -39.9787, -31.6456, -22.6456  (xmin, xmax, ymin, ymax)
#coord. ref. : +proj=longlat +datum=WGS84 +no_defs 
#sources     : memory  
#              memory  
#names       :      844,      845 
#min values  :        0,        0 
#max values  : 276.6844, 313.1531