I have several questions with the following algorithms to tell if a number is prime, I also know that with the sieve of Eratosthenes can be faster response.
- Why is faster to compute
i i * sqrt (n)
times. thansqrt (n)
just one time ? - Why
Math.sqrt()
is faster than mysqrt()
method ? What is the complexity of these algorithms O (n), O (sqrt (n)), O (n log (n))?
public class Main { public static void main(String[] args) { // Case 1 comparing Algorithms long startTime = System.currentTimeMillis(); // Start Time for (int i = 2; i <= 100000; ++i) { if (isPrime1(i)) continue; } long stopTime = System.currentTimeMillis(); // End Time System.out.printf("Duracion: %4d ms. while (i*i <= N) Algorithm\n", stopTime - startTime); // Case 2 comparing Algorithms startTime = System.currentTimeMillis(); for (int i = 2; i <= 100000; ++i) { if (isPrime2(i)) continue; } stopTime = System.currentTimeMillis(); System.out.printf("Duracion: %4d ms. while (i <= sqrt(N)) Algorithm\n", stopTime - startTime); // Case 3 comparing Algorithms startTime = System.currentTimeMillis(); for (int i = 2; i <= 100000; ++i) { if (isPrime3(i)) continue; } stopTime = System.currentTimeMillis(); System.out.printf( "Duracion: %4d ms. s = sqrt(N) while (i <= s) Algorithm\n", stopTime - startTime); // Case 4 comparing Algorithms startTime = System.currentTimeMillis(); for (int i = 2; i <= 100000; ++i) { if (isPrime4(i)) continue; } stopTime = System.currentTimeMillis(); System.out.printf( "Duracion: %4d ms. s = Math.sqrt(N) while (i <= s) Algorithm\n", stopTime - startTime); } public static boolean isPrime1(int n) { for (long i = 2; i * i <= n; i++) { if (n % i == 0) return false; } return true; } public static boolean isPrime2(int n) { for (long i = 2; i <= sqrt(n); i++) { if (n % i == 0) return false; } return true; } public static boolean isPrime3(int n) { double s = sqrt(n); for (long i = 2; i <= s; i++) { if (n % i == 0) return false; } return true; } public static boolean isPrime4(int n) { // Proving wich if faster between my sqrt method or Java's sqrt double s = Math.sqrt(n); for (long i = 2; i <= s; i++) { if (n % i == 0) return false; } return true; } public static double abs(double n) { return n < 0 ? -n : n; } public static double sqrt(double n) { // Newton's method, from book Algorithms 4th edition by Robert Sedgwick // and Kevin Wayne if (n < 0) return Double.NaN; double err = 1e-15; double p = n; while (abs(p - n / p) > err * n) p = (p + n / p) / 2.0; return p; } }
This is the link of my code also: http://ideone.com/Fapj1P
1. Why is faster to compute i*i, sqrt (n) times. than sqrt (n) just one time ?
Look at the complexities below. The additional cost of computing square root.2. Why Math.sqrt() is faster than my sqrt() method ?
Math.sqrt() delegates call to StrictMath.sqrt which is done in hardware or native code.
3. What is the complexity of these algorithms?
The complexity of each function you described
i=2 .. i*i<n
O(sqrt(n))i=2 .. sqrt(n)
O(sqrt(n)*log(n))i=2 .. sqrt (by Newton's method)
O(sqrt(n)) + O(log(n))i=2 .. sqrt (by Math.sqrt)
O(sqrt(n))Newton's method's complexity from
http://en.citizendium.org/wiki/Newton%27s_method#Computational_complexity