I'm looking for a way to copy Space
instances in Gecode and then analyze the difference between the spaces later.
However it goes already wrong after the first copy. When one copies the code in the book Modelling and Programming in Gecode, as shown here below, and simply modifies it such that a copy is made first (SendMoreMoney* smm = m->copy(true);
), one gets a Segmentation fault, regardless whether the shared
option is true
or false
.
#include <gecode/int.hh>
#include <gecode/search.hh>
using namespace Gecode;
class SendMoreMoney : public Space {
protected:
IntVarArray l;
public:
SendMoreMoney(void) : l(*this, 8, 0, 9) {
IntVar s(l[0]), e(l[1]), n(l[2]), d(l[3]),
m(l[4]), o(l[5]), r(l[6]), y(l[7]);
// no leading zeros
rel(*this, s, IRT_NQ, 0);
rel(*this, m, IRT_NQ, 0);
// all letters distinct
distinct(*this, l);
// linear equation
IntArgs c(4+4+5); IntVarArgs x(4+4+5);
c[0]=1000; c[1]=100; c[2]=10; c[3]=1;
x[0]=s; x[1]=e; x[2]=n; x[3]=d;
c[4]=1000; c[5]=100; c[6]=10; c[7]=1;
x[4]=m; x[5]=o; x[6]=r; x[7]=e;
c[8]=-10000; c[9]=-1000; c[10]=-100; c[11]=-10; c[12]=-1;
x[8]=m; x[9]=o; x[10]=n; x[11]=e; x[12]=y;
linear(*this, c, x, IRT_EQ, 0);
// post branching
branch(*this, l, INT_VAR_SIZE_MIN(), INT_VAL_MIN());
}
// search support
SendMoreMoney(bool share, SendMoreMoney& s) : Space(share, s) {
l.update(*this, share, s.l);
}
virtual SendMoreMoney* copy(bool share) {
return new SendMoreMoney(share,*this);
}
// print solution
void print(void) const {
std::cout << l << std::endl;
}
};
// main function
int main(int argc, char* argv[]) {
// create model and search engine
SendMoreMoney* m = new SendMoreMoney;
SendMoreMoney* mc = m->copy(true);
DFS<SendMoreMoney> e(m);
delete m;
// search and print all solutions
while (SendMoreMoney* s = e.next()) {
s->print(); delete s;
}
return 0;
}
How can one make a real copy?
As a workaround, one can create a totally independent space and then use equality constraints on the variable level to reduce the domains of these variables.
Example:
The reason why one can't clone a
Space
is however still a mystery.