Do I have to do normalization on my data if all the features are of the same scale? for example, all the columns are features and each row/sample is the number of occurrences for each feature? And if normalization is required do I need feature-wise or sample-wise normalization?
When to perform Normalization or Standardization in machine learning?
522 views Asked by Martina Morcos At
1
There are 1 answers
Related Questions in MACHINE-LEARNING
- new thread blocks main thread
- Extracting viewCount & SubscriberCount from YouTube API V3 for a given channel, where channelID does not equal userID
- Display images on Django Template Site
- Difference between list() and dict() with generators
- How can I serialize a numpy array while preserving matrix dimensions?
- Protractor did not run properly when using browser.wait, msg: "Wait timed out after XXXms"
- Why is my program adding int as string (4+7 = 47)?
- store numpy array in mysql
- how to omit the less frequent words from a dictionary in python?
- Update a text file with ( new words+ \n ) after the words is appended into a list
Related Questions in NEURAL-NETWORK
- new thread blocks main thread
- Extracting viewCount & SubscriberCount from YouTube API V3 for a given channel, where channelID does not equal userID
- Display images on Django Template Site
- Difference between list() and dict() with generators
- How can I serialize a numpy array while preserving matrix dimensions?
- Protractor did not run properly when using browser.wait, msg: "Wait timed out after XXXms"
- Why is my program adding int as string (4+7 = 47)?
- store numpy array in mysql
- how to omit the less frequent words from a dictionary in python?
- Update a text file with ( new words+ \n ) after the words is appended into a list
Related Questions in DATASET
- new thread blocks main thread
- Extracting viewCount & SubscriberCount from YouTube API V3 for a given channel, where channelID does not equal userID
- Display images on Django Template Site
- Difference between list() and dict() with generators
- How can I serialize a numpy array while preserving matrix dimensions?
- Protractor did not run properly when using browser.wait, msg: "Wait timed out after XXXms"
- Why is my program adding int as string (4+7 = 47)?
- store numpy array in mysql
- how to omit the less frequent words from a dictionary in python?
- Update a text file with ( new words+ \n ) after the words is appended into a list
Related Questions in NORMALIZATION
- new thread blocks main thread
- Extracting viewCount & SubscriberCount from YouTube API V3 for a given channel, where channelID does not equal userID
- Display images on Django Template Site
- Difference between list() and dict() with generators
- How can I serialize a numpy array while preserving matrix dimensions?
- Protractor did not run properly when using browser.wait, msg: "Wait timed out after XXXms"
- Why is my program adding int as string (4+7 = 47)?
- store numpy array in mysql
- how to omit the less frequent words from a dictionary in python?
- Update a text file with ( new words+ \n ) after the words is appended into a list
Related Questions in STANDARDIZATION
- new thread blocks main thread
- Extracting viewCount & SubscriberCount from YouTube API V3 for a given channel, where channelID does not equal userID
- Display images on Django Template Site
- Difference between list() and dict() with generators
- How can I serialize a numpy array while preserving matrix dimensions?
- Protractor did not run properly when using browser.wait, msg: "Wait timed out after XXXms"
- Why is my program adding int as string (4+7 = 47)?
- store numpy array in mysql
- how to omit the less frequent words from a dictionary in python?
- Update a text file with ( new words+ \n ) after the words is appended into a list
Popular Questions
- How do I undo the most recent local commits in Git?
- How can I remove a specific item from an array in JavaScript?
- How do I delete a Git branch locally and remotely?
- Find all files containing a specific text (string) on Linux?
- How do I revert a Git repository to a previous commit?
- How do I create an HTML button that acts like a link?
- How do I check out a remote Git branch?
- How do I force "git pull" to overwrite local files?
- How do I list all files of a directory?
- How to check whether a string contains a substring in JavaScript?
- How do I redirect to another webpage?
- How can I iterate over rows in a Pandas DataFrame?
- How do I convert a String to an int in Java?
- Does Python have a string 'contains' substring method?
- How do I check if a string contains a specific word?
Popular Tags
Trending Questions
- UIImageView Frame Doesn't Reflect Constraints
- Is it possible to use adb commands to click on a view by finding its ID?
- How to create a new web character symbol recognizable by html/javascript?
- Why isn't my CSS3 animation smooth in Google Chrome (but very smooth on other browsers)?
- Heap Gives Page Fault
- Connect ffmpeg to Visual Studio 2008
- Both Object- and ValueAnimator jumps when Duration is set above API LvL 24
- How to avoid default initialization of objects in std::vector?
- second argument of the command line arguments in a format other than char** argv or char* argv[]
- How to improve efficiency of algorithm which generates next lexicographic permutation?
- Navigating to the another actvity app getting crash in android
- How to read the particular message format in android and store in sqlite database?
- Resetting inventory status after order is cancelled
- Efficiently compute powers of X in SSE/AVX
- Insert into an external database using ajax and php : POST 500 (Internal Server Error)
No, you do not have to do normalization on your data if all your features are on the same scale.
For standardization, you want to check the statistical distribution of your data to make sure they have a standard normal distribution with mean,μ=0 and standard deviation, σ=1; where μ is the mean (average) and σ is the standard deviation from the mean.
You can do this in pandas by calling
.describe()
on your data and investigating themean
andstd
. If it happens that some features have normal distribution while others don't, you can carry-our sample-wise standardization (on the entire dataset).