With using the PCA technique and the Yale database, I'm trying to work on face recognition within Matlab by randomly splitting the training process to 20% and the testing process to 80%. It is given an
Index in position 2 exceeds array bounds (must not exceed 29)
error. The following is the code, hoping to get help:
dataset = load('yale_FaceDataset.mat');
trainSz = round(dataset.samples*0.2);
testSz = round(dataset.samples*0.8);
trainSetCell = cell(1,trainSz*dataset.classes);
testSetCell = cell(1,testSz*dataset.classes);
j = 1;
k = 1;
m = 1;
for i = 1:dataset.classes
% training set
trainSetCell(k:k+trainSz-1) = dataset.images(j:j+trainSz-1);
trainLabels(k:k+trainSz-1) = dataset.labels(j:j+trainSz-1);
k = k+trainSz;
% test set
testSetCell(m:m+testSz-1) = dataset.images(j+trainSz:j+dataset.samples-1);
testLabels(m:m+testSz-1) = dataset.labels(j+trainSz:j+dataset.samples-1);
m = m+testSz;
j = j+dataset.samples;
end
% convert the data from a cell into a matrix format
numImgs = length(trainSetCell);
trainSet = zeros(numImgs,numel(trainSetCell{1}));
for i = 1:numImgs
trainSet(i,:) = reshape(trainSetCell{i},[],1);
end
numImgs = length(testSetCell);
testSet = zeros(numImgs,numel(testSetCell{1}));
for i = 1:numImgs
testSet(i,:) = reshape(testSetCell{i},[],1);
end
%% applying PCA
% compute the mean face
mu = mean(trainSet)';
% centre the training data
trainSet = trainSet - (repmat(mu,1,size(trainSet,1)))';
% generate the eigenfaces(features of the training set)
eigenfaces = pca(trainSet);
% set the number of principal components
Ncomponents = 100;
% Out of the generated components, we keep "Ncomponents"
eigenfaces = eigenfaces(:,1:Ncomponents);
% generate training features
trainFeatures = eigenfaces' * trainSet';
% Subspace projection
% centre features
testSet = testSet - (repmat(mu,1,size(testSet,1)))';
% subspace projection
testFeatures = inv(eigenfaces'*eigenfaces) * eigenfaces' * testSet';
mdl = fitcdiscr(trainFeatures',trainLabels);
labels = predict(mdl,testFeatures');
% find the images that were recognised and their respect. labels
correctRec = find(testLabels == labels');
correctLabels = labels(correctRec);
% find the images that were NOT recognised and their respect. labels
falseRec = find(testLabels ~= labels');
falseLabels = labels(falseRec);
% compute and display the recognition rate
result = length(correctRec)/length(testLabels)*100;
fprintf('The recognition rate is: %0.3f \n',result);
% divide the images into : recognised and unrecognised
correctTest = testSetCell(correctRec);
falseTest = testSetCell(falseRec);
% display some recognised samples and their respective labels
imgshow(correctTest(1:8),correctLabels(1:8));
% display all unrecognised samples and their respective labels
imgshow(falseTest(1:length(falseTest)), falseLabels(1:length(falseTest)));
it would be nice, if you provide also the line-number and the full message of the error and if you would strip your code to the essential. I guess, the PCA-stuff is not necessary here, as the error is raised probably in your loop. That is because you are incrementing
j
byj = j+dataset.samples;
and take this in the next loop-set for indexingj:j+trainSz-1
, which now must exceeddataset.samples
...Nevertheless, there is no randomness in the indexing. It is easiest if you use the built-in
cvpartition
-function:You may provide the number of classes as first input (
Lbl
in this case) or the actual class vector to letcvpartition
pick random subsets that reflect the original distribution of the individual classes.