Hi recently i appeared in an aptitude,there was a problem that i realy cant understand please provide some idea, how to solve it.(and sorry to for poor English.)
(Question)-> Three candidates, Amar, Birendra and Chanchal stand for the local election. Opinion polls are conducted and show that fraction a of the voters prefer Amar to Birendra, fraction b prefer Birendra to Chanchal and fraction c prefer Chanchal to Amar. Which of the following is impossible?
(a) (a, b, c) = (0.51, 0.51, 0.51);
(b) (a, b, c) = (0.61, 0.71, 0.67);
(c) (a, b, c) = (0.68, 0.68, 0.68);
(d) (a, b, c) = (0.49, 0.49, 0.49);
(e) None of the above.
If you tried to list of possible preferences people can have are either
in this case you'll find that each fraction of the population represents:
therefore a+b+c = 2(ABC+BCA+CAB)+ACB+BAC+CBA as you notice not all groups within the population are repeated. we can therefore assume than (a+b+c) can never be more than twice the population since each member of the population is represented twice at the most.
out of the options C is the one where the sum is more than 2. and is therefore the impossible value.