The introductory documentation, which I am reading (TOC here) uses the term "batch" (for instance here) without having defined it.
Related Questions in TENSORFLOW
- A deterministic GPU implementation of fused batch-norm backprop, when training is disabled, is not currently available
- Keras similarity calculation. Enumerating distance between two tensors, which indicates as lists
- Does tensorflow have a way of calculating input importance for simple neural networks
- How to predict input parameters from target parameter in a machine learning model?
- Windows 10 TensorFlow cannot detect Nvidia GPU
- unable to use ignore_class in SparseCategoricalCrossentropy
- Why is this code not working? I've tried everything and everything seems to be fine, but no
- Why convert jpeg into tfrecords?
- ValueError: The shape of the target variable and the shape of the target value in `variable.assign(value)` must match
- The kernel appears to have died. It will restart automatically. whenever i try to run the plt.imshow() and plt.show() function in jupyter notebook
- Pneumonia detection, using transfer learning
- Cannot install tensorflow ver 2.3.0 (distribution not found)
- AttributeError: module 'keras._tf_keras.keras.layers' has no attribute 'experimental'
- Error while loading .keras model: Layer node index out of bounds
- prediction model with python tensorflow and keras, gives error when predicting
Related Questions in MACHINE-LEARNING
- Trained ML model with the camera module is not giving predictions
- Keras similarity calculation. Enumerating distance between two tensors, which indicates as lists
- How to get content of BLOCK types LAYOUT_TITLE, LAYOUT_SECTION_HEADER and LAYOUT_xx in Textract
- How to predict input parameters from target parameter in a machine learning model?
- The training accuracy and the validation accuracy curves are almost parallel to each other. Is the model overfitting?
- ImportError: cannot import name 'HuggingFaceInferenceAPI' from 'llama_index.llms' (unknown location)
- Which library can replace causal_conv1d in machine learning programming?
- Fine-Tuning Large Language Model on PDFs containing Text and Images
- Sketch Guided Text to Image Generation
- My ICNN doesn't seem to work for any n_hidden
- Optuna Hyperband Algorithm Not Following Expected Model Training Scheme
- How can I resolve this error and work smoothly in deep learning?
- ModuleNotFoundError: No module named 'llama_index.node_parser'
- Difference between model.evaluate and metrics.accuracy_score
- Give Bert an input and ask him to predict. In this input, can Bert apply the first word prediction result to all subsequent predictions?
Related Questions in NEURAL-NETWORK
- Influence of Unused FFN on Model Accuracy in PyTorch
- How to train a model with CSV files of multiple patients?
- Does tensorflow have a way of calculating input importance for simple neural networks
- My ICNN doesn't seem to work for any n_hidden
- a problem for save and load a pytorch model
- config QConfig in pytorch QAT
- How can I convert a flax.linen.Module to a torch.nn.Module?
- Spiking neural network on FPGA
- Error while loading .keras model: Layer node index out of bounds
- Matrix multiplication issue in a Bidirectional LSTM Model
- Recommended way to use Gymnasium with neural networks to avoid overheads in model.fit and model.predict
- Loss is not changing. Its remaining constant
- Relationship Between Neural Network Distances and Performance
- Mapping a higher dimension tensor into a lower one: (B, F, D) -> (B, F-n, D) in PyTorch
- jax: How do we solve the error: pmap was requested to map its argument along axis 0, which implies that its rank should be at least 1, but is only 0?
Related Questions in DEEP-LEARNING
- Influence of Unused FFN on Model Accuracy in PyTorch
- How to train a model with CSV files of multiple patients?
- Does tensorflow have a way of calculating input importance for simple neural networks
- What is the alternative to module: tf.keras.preprocessing?
- Which library can replace causal_conv1d in machine learning programming?
- My MSE and MAE are low, but my R2 is not good, how to improve it?
- Sketch Guided Text to Image Generation
- ValueError: The shape of the target variable and the shape of the target value in `variable.assign(value)` must match
- a problem for save and load a pytorch model
- Optuna Hyperband Algorithm Not Following Expected Model Training Scheme
- How can I resolve this error and work smoothly in deep learning?
- Difference between model.evaluate and metrics.accuracy_score
- Integrating Mesonet algorithm with a webUI for deepfake detection model
- How can i edit the "wake-word-detection notebook" on coursera so it fit my own word?
- PyTorch training on M2 GPU slower than Colab CPU
Related Questions in TENSOR
- Eigen: What's the output of argmax/argmin when applied to a tensor with duplicate values?
- RecursionError and pyinstaller .spec error
- How to do a simple large matrix multiplication on multiple GPUs in PyTorch? I have wrote some simple codes, but works not well
- Rearrange 2D tensors in a batch Torch
- I have been trying to convert a TensorFlow code to pytorch and main problem is ,what to use in place tf.keras.layers.Layer in pytorch
- Faster alternative for numpy einsum in Python
- I have used detach().clone().cpu().numpy() but still raise TypeError: can't convert cuda:0 device type tensor to numpy
- PyTorch - KMNIST Dataset - how to get the grey-scale channel from a Tensor?
- Given a few block matrices, get the overall large matrix
- get the indices in a C++ mdspan from a reference by arithmetic
- Tensor data is null
- Numpythonic way to perform vector substraction where the operands has different shape each other (a,n) - (b,n)
- Loading llama2 Checkpoint that was saved on 2 GPUs, 0 and 1
- Reinforcement Learning - Shapes and predictions questions
- Is it possible to delete an element from a pytorch tensor referentially?
Popular Questions
- How do I undo the most recent local commits in Git?
- How can I remove a specific item from an array in JavaScript?
- How do I delete a Git branch locally and remotely?
- Find all files containing a specific text (string) on Linux?
- How do I revert a Git repository to a previous commit?
- How do I create an HTML button that acts like a link?
- How do I check out a remote Git branch?
- How do I force "git pull" to overwrite local files?
- How do I list all files of a directory?
- How to check whether a string contains a substring in JavaScript?
- How do I redirect to another webpage?
- How can I iterate over rows in a Pandas DataFrame?
- How do I convert a String to an int in Java?
- Does Python have a string 'contains' substring method?
- How do I check if a string contains a specific word?
Trending Questions
- UIImageView Frame Doesn't Reflect Constraints
- Is it possible to use adb commands to click on a view by finding its ID?
- How to create a new web character symbol recognizable by html/javascript?
- Why isn't my CSS3 animation smooth in Google Chrome (but very smooth on other browsers)?
- Heap Gives Page Fault
- Connect ffmpeg to Visual Studio 2008
- Both Object- and ValueAnimator jumps when Duration is set above API LvL 24
- How to avoid default initialization of objects in std::vector?
- second argument of the command line arguments in a format other than char** argv or char* argv[]
- How to improve efficiency of algorithm which generates next lexicographic permutation?
- Navigating to the another actvity app getting crash in android
- How to read the particular message format in android and store in sqlite database?
- Resetting inventory status after order is cancelled
- Efficiently compute powers of X in SSE/AVX
- Insert into an external database using ajax and php : POST 500 (Internal Server Error)
Let's say you want to do digit recognition (MNIST) and you have defined your architecture of the network (CNNs). Now, you can start feeding the images from the training data one by one to the network, get the prediction (till this step it's called as doing inference), compute the loss, compute the gradient, and then update the parameters of your network (i.e. weights and biases) and then proceed with the next image ... This way of training the model is sometimes called as online learning.
But, you want the training to be faster, the gradients to be less noisy, and also take advantage of the power of GPUs which are efficient at doing array operations (nD-arrays to be specific). So, what you instead do is feed in say 100 images at a time (the choice of this size is up to you (i.e. it's a hyperparameter) and depends on your problem too). For instance, take a look at the below picture, (Author: Martin Gorner)
Here, since you're feeding in 100 images(
28x28) at a time (instead of 1 as in the online training case), the batch size is 100. Oftentimes this is called as mini-batch size or simplymini-batch.Also the below picture: (Author: Martin Gorner)
Now, the matrix multiplication will all just work out perfectly fine and you will also be taking advantage of the highly optimized array operations and hence achieve faster training time.
If you observe the above picture, it doesn't matter that much whether you give 100 or 256 or 2048 or 10000 (batch size) images as long as it fits in the memory of your (GPU) hardware. You'll simply get that many predictions.
But, please keep in mind that this batch size influences the training time, the error that you achieve, the gradient shifts etc., There is no general rule of thumb as to which batch size works out best. Just try a few sizes and pick the one which works best for you. But try not to use large batch sizes since it will overfit the data. People commonly use mini-batch sizes of
32, 64, 128, 256, 512, 1024, 2048.Bonus: To get a good grasp of how crazy you can go with this batch size, please give this paper a read: weird trick for parallelizing CNNs