I had a look at the wave format today and created a little wave generator. I create a sine sound like this:
public static Wave GetSine(double length, double hz)
{
int bitRate = 44100;
int l = (int)(bitRate * length);
double f = 1.0 / bitRate;
Int16[] data = new Int16[l];
for (int i = 0; i < l; i++)
{
data[i] = (Int16)(Math.Sin(hz * i * f * Math.PI * 2) * Int16.MaxValue);
}
return new Wave(false, Wave.MakeInt16WaveData(data));
}
MakeInt16WaveData looks like this:
public static byte[] MakeInt16WaveData(Int16[] ints)
{
int s = sizeof(Int16);
byte[] buf = new byte[s * ints.Length];
for(int i = 0; i < ints.Length; i++)
{
Buffer.BlockCopy(BitConverter.GetBytes(ints[i]), 0, buf, i * s, s);
}
return buf;
}
This works as expected! Now I wanted to swoop from one frequency to another like this:
public static Wave GetSineSwoop(double length, double hzStart, double hzEnd)
{
int bitRate = 44100;
int l = (int)(bitRate * length);
double f = 1.0 / bitRate;
Int16[] data = new Int16[l];
double hz;
double hzDelta = hzEnd - hzStart;
for (int i = 0; i < l; i++)
{
hz = hzStart + ((double)i / l) * hzDelta * 0.5; // why *0.5 ?
data[i] = (Int16)(Math.Sin(hz * i * f * Math.PI * 2) * Int16.MaxValue);
}
return new Wave(false, Wave.MakeInt16WaveData(data));
}
Now, when I swooped from 200 to 100 Hz, the sound played from 200 to 0 hertz. For some reason I had to multiply the delta by 0.5 to get the correct output. What might be the issue here ? Is this an audio thing or is there a bug in my code ?
Thanks
Edit by TaW: I take the liberty to add screenshots of the data in a chart which illustrate the problem, the first is with the 0.5 factor, the 2nd with 1.0 and the 3rd & 4th with 2.0 and 5.0:
Edit: here is an example, a swoop from 200 to 100 hz: Debug values: Wave clearly does not end at 100 hz
Digging out my rusty math I think it may be because:
Going in L steps from frequency F1 to F2 you have a frequency of
or with
Now to find out how far we have progressed we need the integral over
i
, which would beWhich give or take resembles the term inside your formula for the
sine
.Note that you can gain efficiency by moving the constant part (
S/2
) out of the loop..