I am doing vehicle registration plate detection using YOLOv4 in colab. When I ran !python \convert_annotations.py file I got following error
Currently in subdirectory: validation
Converting annotations for class: Vehicle registration plate
0% 0/30 [00:00<?, ?it/s]
Traceback (most recent call last):
File "convert_annotations.py", line 63, in <module>
coords = np.asarray([float(labels[1]), float(labels[2]), float(labels[3]), float(labels[4])])
ValueError: could not convert string to float: 'registration'
convert_annotations.py file is as follows.
import os
import cv2
import numpy as np
from tqdm import tqdm
import argparse
import fileinput
# function that turns XMin, YMin, XMax, YMax coordinates to normalized yolo format
def convert(filename_str, coords):
os.chdir("..")
image = cv2.imread(filename_str + ".jpg")
coords[2] -= coords[0]
coords[3] -= coords[1]
x_diff = int(coords[2]/2)
y_diff = int(coords[3]/2)
coords[0] = coords[0]+x_diff
coords[1] = coords[1]+y_diff
coords[0] /= int(image.shape[1])
coords[1] /= int(image.shape[0])
coords[2] /= int(image.shape[1])
coords[3] /= int(image.shape[0])
os.chdir("Label")
return coords
ROOT_DIR = os.getcwd()
# create dict to map class names to numbers for yolo
classes = {}
with open("classes.txt", "r") as myFile:
for num, line in enumerate(myFile, 0):
line = line.rstrip("\n")
classes[line] = num
myFile.close()
# step into dataset directory
os.chdir(os.path.join("OID", "Dataset"))
DIRS = os.listdir(os.getcwd())
# for all train, validation and test folders
for DIR in DIRS:
if os.path.isdir(DIR):
os.chdir(DIR)
print("Currently in subdirectory:", DIR)
CLASS_DIRS = os.listdir(os.getcwd())
# for all class folders step into directory to change annotations
for CLASS_DIR in CLASS_DIRS:
if os.path.isdir(CLASS_DIR):
os.chdir(CLASS_DIR)
print("Converting annotations for class: ", CLASS_DIR)
# Step into Label folder where annotations are generated
os.chdir("Label")
for filename in tqdm(os.listdir(os.getcwd())):
filename_str = str.split(filename, ".")[0]
if filename.endswith(".txt"):
annotations = []
with open(filename) as f:
for line in f:
for class_type in classes:
line = line.replace(class_type, str(classes.get(class_type)))
labels = line.split()
coords = np.asarray([float(labels[1]), float(labels[2]), float(labels[3]), float(labels[4])])
coords = convert(filename_str, coords)
labels[1], labels[2], labels[3], labels[4] = coords[0], coords[1], coords[2], coords[3]
newline = str(labels[0]) + " " + str(labels[1]) + " " + str(labels[2]) + " " + str(labels[3]) + " " + str(labels[4])
line = line.replace(line, newline)
annotations.append(line)
f.close()
os.chdir("..")
with open(filename, "w") as outfile:
for line in annotations:
outfile.write(line)
outfile.write("\n")
outfile.close()
os.chdir("Label")
os.chdir("..")
os.chdir("..")
os.chdir("..")
I am doing this by seeing youtube videos so in video he didn't get error but I am getting error. What could be the problem, please help?
Brian, the solution to your problem :
With your terminal, go to your directory, for example :
To get 15 images for the training data:
To get 3 images for the validation:
(If you want, you can set higher numbers, like 1500 images for the training data and 300 for the validation data)
Within the root
OIDv4_ToolKit
folder open the fileclasses.txt
and edit it to have the classes you just downloaded and type exactly:Finally, the command to convert all labels to YOLOv4 format:
Normally, this solution works like a charm.