I’m looking for alternatives for line scan cameras to be used in sports timing, or rather in the part where placing needs to be figured out. I found that common industrial cameras can readily match the speed of commercial camera solutions at >1000 frames per second. For my needs, usually the timing accuracy is not important, but the relative placing of athletes. I figured I could use one of the cheapest Basler, IDS or any other area scan industrial cameras for this purpose. Of course there are line scan cameras that can do a lot more than a few thousand fps (or hz), but it is possible to get area scan cameras that can do the required 1000-3000fps for less than 500€.
My holy grail would of course be the near-real time image composition capabilities of FinishLynx (or any other line scan system), basically this part: https://youtu.be/7CWZvFcwSEk?t=23s
The whole process I was thinking for my alternative is:
- Use Basler Pylon Viewer (or other software) to record 2px wide images at the camera’s fastest read speed. For the camera I am currently using it means it has to be turned on it’s side and the height needs to be reduced, since it is the only way it will read 1920x2px frames @ >250fps
- Make a program or batch script that then stitches these 1920x2px frames together to, for example one second of recording 1000*1920x2px frames, meaning a resulting image with a resolution of 1920x2000px (Horizontal x Vertical).
- Finally using the same program or another way, just rotate the image so it reflects how the camera is positioned, thus achieving an image with a resolution of 2000x1920px (again Horizontal x Vertical)
- Open the image in an analyzing program (currently ImageJ) to quickly analyze results
I am no programmer, but this is what I was able to put together just using batch scripts, with the help of stackoverflow of course.
- Currently recording a whole 10 seconds for example to disk as a raw/mjpeg(avi/mkv) stream can be done in real time.
- Recording individual frames as TIFF or BMP, or using FFMPEG to save them as PNG or JPG takes ~20-60 seconds The appending and rotation then takes a further ~45-60 seconds This all needs to be achieved in less than 60 seconds for 10 seconds of footage(1000-3000fps @ 10s = 10000-30000 frames) , thus why I need something faster.
I was able to figure out how to be pretty efficient with ImageMagick:
magick convert -limit file 16384 -limit memory 8GiB -interlace Plane -quality 85 -append +rotate 270 “%folder%\Basler*.Tiff” “%out%”
#%out% has a .jpg -filename that is dynamically made from folder name and number of frames.
This command works and gets me 10000 frames encoded in about 30 seconds on a i5-2520m (most of the processing seems to be using only one thread though, since it is working at 25% cpu usage). This is the resulting image: https://i.stack.imgur.com/LuwK7.jpg (19686x1928px)
However since recording to TIFF frames using Basler’s Pylon Viewer takes just that much longer than recording an MJPEG video stream, I would like to use the MJPEG (avi/mkv) file as a source for the appending. I noticed FFMPEG has “image2pipe” -command, which should be able to directly give images to ImageMagick. I was not able to get this working though:
$ ffmpeg.exe -threads 4 -y -i "Basler acA1920-155uc (21644989)_20180930_043754312.avi" -f image2pipe - | convert - -interlace Plane -quality 85 -append +rotate 270 "%out%" >> log.txt
ffmpeg version 3.4 Copyright (c) 2000-2017 the FFmpeg developers
built with gcc 7.2.0 (GCC)
configuration: –enable-gpl –enable-version3 –enable-sdl2 –enable-bzlib –enable-fontconfig –enable-gnutls –enable-iconv –enable-libass –enable-libbluray –enable-libfreetype –enable-libmp3lame –enable-libopenjpeg –enable-libopus –enable-libshine –enable-libsnappy –enable-libsoxr –enable-libtheora –enable-libtwolame –enable-libvpx –enable-libwavpack –enable-libwebp –enable-libx264 –enable-libx265 –enable-libxml2 –enable-libzimg –enable-lzma –enable-zlib –enable-gmp –enable-libvidstab –enable-libvorbis –enable-cuda –enable-cuvid –enable-d3d11va –enable-nvenc –enable-dxva2 –enable-avisynth –enable-libmfx
libavutil 55. 78.100 / 55. 78.100
libavcodec 57.107.100 / 57.107.100
libavformat 57. 83.100 / 57. 83.100
libavdevice 57. 10.100 / 57. 10.100
libavfilter 6.107.100 / 6.107.100
libswscale 4. 8.100 / 4. 8.100
libswresample 2. 9.100 / 2. 9.100
libpostproc 54. 7.100 / 54. 7.100
Invalid Parameter - -interlace
[mjpeg @ 000000000046b0a0] EOI missing, emulating
Input #0, avi, from 'Basler acA1920-155uc (21644989)_20180930_043754312.avi’:
Duration: 00:00:50.02, start: 0.000000, bitrate: 1356 kb/s
Stream #0:0: Video: mjpeg (MJPG / 0x47504A4D), yuvj422p(pc, bt470bg/unknown/unknown), 1920x2, 1318 kb/s, 200 fps, 200 tbr, 200 tbn, 200 tbc
Stream mapping:
Stream #0:0 -> #0:0 (mjpeg (native) -> mjpeg (native))
Press [q] to stop, [?] for help
Output #0, image2pipe, to ‘pipe:’:
Metadata:
encoder : Lavf57.83.100
Stream #0:0: Video: mjpeg, yuvj422p(pc), 1920x2, q=2-31, 200 kb/s, 200 fps, 200 tbn, 200 tbc
Metadata:
encoder : Lavc57.107.100 mjpeg
Side data:
cpb: bitrate max/min/avg: 0/0/200000 buffer size: 0 vbv_delay: -1
av_interleaved_write_frame(): Invalid argument
Error writing trailer of pipe:: Invalid argument
frame= 1 fps=0.0 q=1.6 Lsize= 0kB time=00:00:00.01 bitrate= 358.4kbits/s speed=0.625x
video:0kB audio:0kB subtitle:0kB other streams:0kB global headers:0kB muxing overhead: 0.000000%
Conversion failed!
If I go a bit higher for the height, I no longer get the “[mjpeg @ 000000000046b0a0] EOI missing, emulating” -error. However the whole thing will only work with <2px high/wide footage.
edit: Oh yes, I can also use ffmpeg -i file.mpg -r 1/1 $filename%03d.bmp
or ffmpeg -i file.mpg $filename%03d.bmp
to extract all the frames from the MJPEG/RAW stream. However this is an extra step I do not want to take. (just deleting a folder of 30000 jpgs takes 2 minutes alone…)
Can someone think of a working solution for the piping method or a totally different alternative way of handling this?
I had another go at this to see if I could speed up my other answer by doing things a couple of different ways - hence a different answer. I used the same synthetic videoclip that I generated in the other answer to test with.
Rather than pass the 2x1920 scanlines into ImageMagick for it to append together and write as a JPEG, I did the following:
created the full output frame up front in a C++ program, and then looped reading in a 2x1920 scanline on each iteration and stuffed that into the correct position in the output frame, and
when the entire sequence has been read, compressed it into a JPEG using turbo-jpeg and wrote it disk.
As such, ImageMagick is no longer required. The entire program now runs in around 1.3 seconds rather than the 10.3 seconds via ImageMagick.
Here is the code:
Notes:
Note 1: In order to pre-allocate the output image, the program needs to know how many frames are coming in advance - I did not parameterize that, I just hard-coded 10,000 but it should be easy enough to change.
One way to determine the number of frames in the video sequence is this:
Note 2: Note that I compiled the code with a couple of switches for performance:
Note 3: If you are running on Windows, you may need to re-open
stdin
in binary mode before doing:Note 4: If you don't want to use turbo-jpeg, you could remove everything after the end of the main loop, and simply send a NetPBM
PPM
image to ImageMagick via a pipe and let it do the JPEG writing. That would look like, very roughly:Then you would run with: