I converted a toy Pytorch regression model to CoreML mlmodel using coremltools and set it to be updatable with mean_squared_error_loss. But when testing the training, the context.metrics[.lossValue]
can give negative value and is very different from my own computed loss as shown in the screenshot below. I was wondering if I used a wrong way to extract the training loss? Does context.metrics[.lossValue]
really give MSE if I used coremltools function set_mean_squared_error_loss
to set the loss? Any suggestion is appreciated.
I am using coremltools==7.0
, xcode==15.0.1
let progressHandlers = MLUpdateProgressHandlers(forEvents: [.trainingBegin, .epochEnd],
progressHandler: { context in
switch context.event {
case .trainingBegin:
print("Training began.")
case .epochEnd:
let loss = context.metrics[.lossValue] as! Double
lossValues.append(loss)
let validationLoss = computeValidationLoss(model: context.model, validationData: validationData)
validationLossValues.append(validationLoss)
print("Epoch \(context.metrics[.epochIndex]!) ended. Training Loss: \(loss), Validation Loss: \(validationLoss)")
print("\(context.metrics[.lossValue]!)")
default:
break
}
},
completionHandler: { context in
if let error = context.task.error {
print("Update task failed with error: \(error)")
} else {
print("Update task completed")
}
}
)
Here is my code to convert Pytorch model to updatable CoreML model:
import torch
import torch.optim as optim
import torch.nn as nn
import coremltools as ct
# Define a simple neural network with two layers
class SimpleRegressionModel(nn.Module):
def __init__(self):
super(SimpleRegressionModel, self).__init__()
self.layer1 = nn.Linear(2, 5) # 2 inputs, 5 outputs
self.layer2 = nn.Linear(5, 1) # 5 inputs, 1 output
def forward(self, x):
x = torch.relu(self.layer1(x))
x = self.layer2(x)
return x
# Create the model
model = SimpleRegressionModel()
# Create a sample input tensor
sample_input = torch.rand(1, 2) # Adjust the shape according to your model's input
# Trace the model with a sample input
traced_model = torch.jit.trace(model, sample_input)
# Convert the traced model to Core ML format
input_features = [ct.TensorType(shape=(1, 2))]
output_features = ["output"]
mlmodel = ct.convert(
traced_model,
inputs=input_features,
convert_to="neuralnetwork"
)
mlmodel.save("regression.mlmodel")
import coremltools
from coremltools.models.neural_network import NeuralNetworkBuilder, SgdParams, AdamParams
from coremltools.models import datatypes
# Load the model specification
spec = coremltools.utils.load_spec('regression.mlmodel')
builder = NeuralNetworkBuilder(spec=spec)
builder.inspect_output_features() # Name: linear_1
# Make layers updatable
builder.make_updatable(['linear_0', 'linear_1'])
# Manually add a mean squared error loss layer
feature = ('linear_1', datatypes.Array(1))
builder.set_mean_squared_error_loss(name='lossLayer', input_feature=feature)
# Define the optimizer (SGD in this example)
# sgd_params = SgdParams(lr=0.001, batch=16) # Adjust learning rate and batch size as needed
# builder.set_sgd_optimizer(sgd_params)
# define the optimizer (Adam in this example)
adam_params = AdamParams(lr=0.01, beta1=0.9, beta2=0.999, eps=1e-8, batch=16)
builder.set_adam_optimizer(adam_params)
# Set the number of epochs
builder.set_epochs(100)
# Optionally, set descriptions for your training inputs
spec.description.trainingInput[0].shortDescription = 'Input data'
spec.description.trainingInput[1].shortDescription = 'Target output data'
# Save the updated model
updated_model = coremltools.models.MLModel(spec)
updated_model.save('updatable_regression30.mlmodel')
Here is the code I use to try to update the saved updatable_regression30.mlmodel
:
import CoreML
import GameKit
func generateSampleData(numSamples: Int, seed: UInt64) -> ([MLMultiArray], [MLMultiArray]) {
var inputArray = [MLMultiArray]()
var outputArray = [MLMultiArray]()
// Create a random number generator with a fixed seed
let randomSource = GKLinearCongruentialRandomSource(seed: seed)
let randomDistribution = GKRandomDistribution(randomSource: randomSource, lowestValue: 0, highestValue: 1000)
for _ in 0..<numSamples {
do {
let input = try MLMultiArray(shape: [1, 2], dataType: .float32)
let output = try MLMultiArray(shape: [1], dataType: .float32)
var sumInput: Float = 0
for i in 0..<input.shape[1].intValue {
// Generate random value using the fixed seed generator
let inputValue = Float(randomDistribution.nextInt()) / 1000.0
input[[0, i] as [NSNumber]] = NSNumber(value: inputValue)
sumInput += inputValue
}
output[0] = NSNumber(value: 10.0 * sumInput + 1.0)
inputArray.append(input)
outputArray.append(output)
} catch {
print("Error occurred while creating MLMultiArrays: \(error)")
}
}
return (inputArray, outputArray)
}
func computeLoss(model: MLModel, data: ([MLMultiArray], [MLMultiArray])) -> Double {
let (inputData, outputData) = data
var totalLoss: Double = 0
for (index, input) in inputData.enumerated() {
let output = outputData[index]
// Using optional binding to safely unwrap the prediction
if let prediction = try? model.prediction(from: MLDictionaryFeatureProvider(dictionary: ["x": MLFeatureValue(multiArray: input)])),
let predictedOutput = prediction.featureValue(for: "linear_1")?.multiArrayValue {
// Now you can safely use predictedOutput
let loss = (output[0].doubleValue - predictedOutput[0].doubleValue)
totalLoss += loss * loss // Mean squared error
}
}
return totalLoss / Double(inputData.count) // Calculating the mean of squared errors
}
func trainModel() {
// Load the updatable model
guard let updatableModelURL = Bundle.main.url(forResource: "updatable_regression30", withExtension: "mlmodelc") else {
print("Failed to load the updatable model")
return
}
// Generate sample data
let (inputData, outputData) = generateSampleData(numSamples: 200, seed: 8)
let validationData = generateSampleData(numSamples: 100, seed:18)
// Create an MLArrayBatchProvider from the sample data
var featureProviders = [MLFeatureProvider]()
for (index, input) in inputData.enumerated() {
let output = outputData[index]
let dataPointFeatures: [String: MLFeatureValue] = [
"x": MLFeatureValue(multiArray: input),
"linear_1_true": MLFeatureValue(multiArray: output)
]
if let provider = try? MLDictionaryFeatureProvider(dictionary: dataPointFeatures) {
featureProviders.append(provider)
}
}
let batchProvider = MLArrayBatchProvider(array: featureProviders)
// Define progress handlers
var lossValues: [Double] = []
var computedTrainingLossValues: [Double] = []
var validationLossValues: [Double] = []
let progressHandlers = MLUpdateProgressHandlers(forEvents: [.trainingBegin, .epochEnd],
progressHandler: { context in
switch context.event {
case .trainingBegin:
print("Training began.")
case .epochEnd:
let loss = context.metrics[.lossValue] as! Double
lossValues.append(loss)
let validationLoss = computeLoss(model: context.model, data: validationData)
validationLossValues.append(validationLoss)
let computedTrainLoss = computeLoss(model: context.model, data: (inputData, outputData))
computedTrainingLossValues.append(validationLoss)
print("Epoch \(context.metrics[.epochIndex]!) ended. Training Loss: \(loss), Computed Training Loss: \(computedTrainLoss), Validation Loss: \(validationLoss)")
print("\(context.metrics[.lossValue]!)")
default:
break
}
},
completionHandler: { context in
if let error = context.task.error {
print("Update task failed with error: \(error)")
} else {
let updatedModel = context.model
do {
let fileManager = FileManager.default
let documentDirectory = try fileManager.url(for: .documentDirectory, in: .userDomainMask, appropriateFor:nil, create:true)
let fileURL = documentDirectory.appendingPathComponent("CatDog5.mlmodelc")
try updatedModel.write(to: fileURL)
print("Model updated and saved successfully to \(fileURL)")
} catch {
print("Failed to save the updated model: \(error)")
}
}
}
)
// Create an update task with progress handlers
let updateTask = try! MLUpdateTask(forModelAt: updatableModelURL,
trainingData: batchProvider,
configuration: nil,
progressHandlers: progressHandlers)
// Start the update task
updateTask.resume()
}
trainModel()