everyone, I recently tried to implement Fast Fourier Transformation in OpenCL, and I tried some code provided in Book "OpenCL in Action". The following code intends to initialize input sequence( or discrete signal ) by perform 4-compoent-wise FFT after bit reversing :
fft.cl:
__kernel void fft_init( __global float2* g_data, __global float2* l_data, uint points_per_group, uint size, int dir )
{
uint g_addr, l_addr, points_per_item;
points_per_item = points_per_group / get_local_size( 0 );
l_addr = get_local_id( 0 ) * points_per_item;
g_addr = get_group_id( 0 ) * points_per_group + l_addr;
uint4 index;
uint mask_left, mask_right, shift_pos;
uint4 br;
float2 x1, x2, x3, x4;
float2 sum12, diff12, sum34, diff34;
for (int i = 0; i < points_per_item; i += 4)
{
index = (uint4){ g_addr, g_addr + 1, g_addr + 2, g_addr + 3 };
mask_left = size / 2;
mask_right = 1;
shift_pos = log2( ( float ) size ) - 1;
while( shift_pos > 1 )
{
br = ( index << shift_pos ) & mask_left;
br |= ( index >> shift_pos ) & mask_right;
mask_left >>= 1;
mask_right <<= 1;
shift_pos -= 2;
}
x1 = g_data[ br.s0 ];
x2 = g_data[ br.s1 ];
x3 = g_data[ br.s2 ];
x4 = g_data[ br.s3 ];
sum12 = x1 + x2;
diff12 = x1 - x2;
sum34 = x3 + x4;
diff34 = ( float2 ){
x3.s1 - x4.s1,
x4.s0 - x3.s1
};
l_data[ l_addr ] = sum12 + sum34;
l_data[ l_addr + 1 ] = diff12 + diff34;
l_data[ l_addr + 2 ] = sum12 - sum34;
l_data[ l_addr + 3 ] = diff12 - diff34;
g_addr += 4;
l_addr += 4;
}
}
I tried a very short sequence of 4 points ( 4 complex numbers ), when I set the parameter "points_per_group" and "size" to 4, the GPU ran out of resource; while I set these two parameter to 8, which is incorrect apparently with the input sequence, it ran through without crash; I also tried another sequence of size 8, with "points_per_group" and "size" set to 8, and it ran through well too. Here is part of the host side code; I wrote in Python, using pyopencl:
def setInputs( self ):
self.numPoints = 8
self.points = ( 1.0, 1.0 ) * self.numPoints
self.pointsArray = numpy.array( self.points, dtype = numpy.float32 )
self.resultArray = numpy.array( ( -1.0, -1.0 ) * self.numPoints, dtype = numpy.float32 )
self.pointsBuffer = cl.Buffer( self.context,
cl.mem_flags.READ_WRITE | cl.mem_flags.COPY_HOST_PTR,
hostbuf = self.pointsArray
)
self.resultBuffer = cl.Buffer( self.context,
cl.mem_flags.READ_WRITE | cl.mem_flags.COPY_HOST_PTR,
hostbuf = self.resultArray
)
def runKernel( self ):
globalWorkSize = ( 1, )
localWorkSize = ( 1, )
print 'Input points : ', self.pointsArray
event = self.program.fft_init( self.commandQueues[ 0 ],
globalWorkSize,
localWorkSize,
self.pointsBuffer,
self.resultBuffer,
numpy.uint32( 8 ),
numpy.uint32( 8 ),
numpy.int32( 1 )
)
event.wait()
print 'Time Consumption : ', ( event.profile.end - event.profile.start ) * 1e-9, ' seconds'
cl.enqueue_copy( self.commandQueues[ 0 ],
self.resultArray,
self.resultBuffer
).wait()
print 'Result : ', self.resultArray
Any idea about this weird issue? :-o