Unexpected timing in Arm assembly

607 views Asked by At

I need a very precise timing, so I wrote some assembly code (for ARM M0+). However, the timing is not what I expected when measuring on an oscilliscope.

#define LOOP_INSTRS_CNT                 4 // subs: 1, cmp: 1, bne: 2 (when branching)
#define FREQ_MHZ                        (BOARD_BOOTCLOCKRUN_CORE_CLOCK / 1000000)
#define DELAY_US_TO_CYCLES(t_us)        ((t_us * FREQ_MHZ + LOOP_INSTRS_CNT / 2) / LOOP_INSTRS_CNT)

static inline __attribute__((always_inline)) void timing_delayCycles(uint32_t loopCnt)
{
  // note: not all instructions take one cycle, so in total we have 4 cycles in the loop, except for the last iteration.
   __asm volatile(
    ".syntax unified \t\n"  /* we need unified to use subs (not for sub, though) */
    "0: \t\n"
    "subs %[cyc], #1 \t\n"  /* assume cycles > 0 */
    "cmp %[cyc], #0 \t\n"
    "bne.n 0b\t\n"          /* this instruction costs 2 cycles when branching! */
    : [cyc]"+r" (loopCnt)   /* actually input, but we need a temporary register, so we use a dummy output so we can also write to the input register */
    :                       /* input specified in output */
    :                       /* no clobbers */
  );
}

// delay test
#define WAIT_TEST_US 100
gpio_clear(PIN1);
timing_delayCycles(DELAY_US_TO_CYCLES(WAIT_TEST_US));
gpio_set(PIN1);

So pretty basic stuff. However, the delay (measured by setting a GPIO pin low, looping, then setting high again) timing is consistently 50% higher than expected. I tried for low values (1 us giving 1.56 us), up to 500 ms giving 750 ms.

I tried to single step, and the loop really does only the 3 steps: subs (1), cmp (1), branch (2). Paranthesis is number of expected clock cycles.

Can anybody shed light on what is going on here?

2

There are 2 answers

8
old_timer On

You can't use these processors like you would a PIC, the timing doesn't work like that. I have demonstrated this here many times you can look around, maybe will do it again here, but not right now.

First off these are pipelined so you average performance is one thing, but and once in a loop and things like caching and branch prediction learning and other factors have settled then you can get consistent performance, for that implementation. Ignore any documentation related to clocks per instruction for a pipelined processor now matter how shallow, that is the first problem in understanding why the timing doesn't work as expected.

Alignment plays a role and folks are tired of me beating this drum but I have demonstrated it so many times. You can search for fetch in the cortex-m0 TRM and you should immediately see that this will affect performance based on alignment. If the chip vendor has compiled the core for 16 bit only then that would be predictable or more predictable (ignoring other factors). But if they have compiled in the other features and if prefetching is happening as described, then the placement of the loop in the address space can affect the loop by plus or minus a fetch affecting the total time to complete the loop, which is measurable with or without a scope.

Branch prediction, which didn't show up in the arm docs as arm doing it but the chip vendors are fully free to do this.

Caching. While a cortex-m0+ if this is an STM32 or perhaps other brands as well, there is or may be a cache you can't turn off. Not uncommon for the flash to be half the speed of the processor thus flash wait state settings, but often the zero wait state means zero additional and it takes two clocks to get one fetch done or at least is measurable that execution in flash is half the speed of execution in ram with all other settings the same (system clock speed, etc). ST has a pretty good prefetch/caching solution with some trademarked name and perhaps a patent who knows. And rarely can you turn this off or defeat it so the first time through or the time entering the loop can see a delay and technically a pre-fetcher can slow down the loop (see alignment).

Flash, as mentioned depending on the chip vendor and age of the part it is quite common for the flash to be half speed of the core. And then depending on your clock rates, when you read about the flash settings in the chip doc where it shows what the required wait states were relative to system clock speed that is a key performance indicator both for the flash technology and whether or not you should really be raising the system clock up too high, the flash doesn't get any faster it has a speed limit, sram from my experience can keep up and so far I don't see them with wait states, but flashes used to be two or three settings across the range of clock speeds the part supports, the newer released parts the flashes are tending to cover the whole range for the slower cores like the m0+ but the m7 and such keep getting higher clock rates so you would still expect the vendors to need wait states.

Interrupts/exceptions. Are you running this on an rtos, are there interrupts going on are you increasing and/or guaranteeing that this gets interrupted with a longer delay?

Peripheral timing, the peripherals are not expected to respond to a load or store in a single clock they can take as long as they want and depending on the clocking system and chip vendors IP, in house or purchased, the peripheral might not run at the processor clock rate and be running at a divided rate making things slower. Your code no doubt is calling this function for a delay, and then outside this timing loop you are wiggling a gpio pin to see something on a scope which leads to how you conducted your benchmark and additional problems with that based on factors above and this one.

And other factors I have to remember.

Like high end processors like the x86, full sized ARMs, etc the processor no longer determines performance. The chip and motherboard can/do. You basically cannot feed the pipe constantly there are stalls going on all over the place. Dram is slow thus layers of caching trying to deal with it but caching helps sometimes and hurts others, branch predictors hurt as much as they help. And so on but it is heavily driven by the system outside the processor core as to how well you can feed the core, and then you get into the core's properties with respect to the pipeline and its own fetching strategy. Ideally using the width of the bus rather than the size of the instruction, transaction overhead so multiple widths of the bus is even more ideal that one width, etc.

Causing tight loops like this on any core to have a jerky motion and or be inconsistent in timing when the same machine code is used at different alignments. Now granted for size/power/etc the m0+ has a tiny pipe, but it still should show the affects of this. These are not pics or avrs or msp430s no reason to expect a timing loop to be consistent. At best you can use a timing loop for things like spi and i2c bit banging where you need to be greater than or equal to some time value, but if you need to be accurate or within a range, it is technically possible per implementation if you control many of the factors, but it is often not worth the effort and you have this maintenance issue now or readability or understandability of the code.

So bottom line there is no reason to expect consistent timing. If you happened to get consistent/linear timing, then great. The first thing you want to do is check that when you changed and re-built the code to use a different value for the loop that it didn't affect alignment of this loop.

You show a loop like this

loop:
   subs r0,#1
   cmp r0,#0
   bne loop

on a tangent why the cmp, why not just

loop:
   subs r0,#1
   bne loop

But second you then claim to be measuring this on a scope, which is good because how you measure things plays into the quality of the benchmark often the benchmark varies because of how it is measured the yardstick is the problem not the thing being measured, or you have problems with both then the measurement is much more inconsistent. Had you used systick or other to measure this depending on how you did that the measurement itself can cause the variation, and even if you used gpio to toggle a pin that can and probably is affecting this as well. All other things held constant simply changing the loop count depending on the immediate and the value used could push you between a thumb and thumb2 instruction changing the alignment of some loop.

What you have shown implies you have this timing loop which can be affected by a number of system issues, then you have wrapped that with some other loop itself being affected, plus possibly a call to a gpio library function which can be affected by these factors as well from a performance perspective. Using inline assembly and the style in which you wrote this function that you posted implies you have exposed yourself and can easily see a wide range of performance differences in running what appears to be the same code, or even actually the code under test being the same machine code.

Unless this is a microchip PIC, not PIC32, or a very very short list of other specific brand and family of chips. Ignore the cycle counts per instruction, assume they are wrong, and don't try for accurate timing unless you control the factors.

Use the hardware, if for example you are trying to use the ws8212/neopixel leds and you have a tight window for timing you are not going to be successful or will have limited success using instruction timing. In that specific case you can sometimes get away with using a spi controller or timers in the part to generate accurately timed (far more than you can ever do with software timers managing the bit banging or otherwise). With a PIC I was able to generate tv infrared signals with the carrier frequency and ons and off using timed loops and nops to make a highly accurate signal. I repeated that for one of these programmable led things for a short number of them on a cortex-m using a long linear list of instructions and relying on execution performance it worked but was extremely limited as it was compile time and quick and dirty. SPI controllers are a pain compared to bit banging but another evening with the SPI controller and could send any length of highly accurately timed signals out.

You need to change your focus to using timers and/or on chip peripherals like uart, spi, i2c in non-normal ways to generate whatever signal this is you are trying to generate. Leave timed loops or even timer based loops wrapped by other loops for the greater than or equal cases and not for the within a range of time cases. If unable to do it with one chip, then look around at others, very often when making a product you have to shop for the components, across vendors, etc. Push comes to shove use a CPLD or a PAL or GAL or something like that to get highly accurate but custom timing. Depending on what you are doing and what your larger system picture looks like the ftdi usb chips with mpsse have a generic state machine that you can program to generate an array of signals, they do i2c, spi, jtag, swd etc with this generic programmable system. But if you don't have a usb host then that won't work.

You didn't specify a chip and I have a lot of different chips/boards handy but only a small fraction of what is out there so if I wanted to do a demo it might not be worth it, if mine has the core compiled one way I might not be able to get it to demonstrate a variation where the same exact core from arm compiled another way on another chip might be easy. I suspect first off a lot of your variation is because you are making calls within a bigger loop, call to delay call to state change the gpio, and you are recompiling that for the experiments. Or worse as shown in your question if you are doing a single pass and not a loop around the calls, then that can maximize the inconsistency.

2
SupAl On

After some good suggestions I found the issue can be resolved in two ways:

  1. Run core clock and flash clock at the same frequency (if code is running from flash)
  2. Place the code in the SRAM to avoid flash access wait-states.

Note: If anybody copies the above code, note that you can delete the cmp, since the subs has the s flag set. If doing so, remember to set instruction count to 3 instead of 4. This will give you a better time resolution.