I am pretty new to to fortran and I don't really know why am I getting this error.
integrand(i)=inte(x(i),beta,r2,r1)
1 Error: Unclassifiable statement at (1) calka11.f95:97.6:
I have made all the variables into a module file and then call them using
use
and when I am getting those variables into the code file again It works fluently again.
module zmienne
real(10) :: r, u, r6, tempred, f, r2, r1, calka,beta
real(10) :: inte
real :: start, finish
integer:: i
integer, parameter :: Ngauss = 8
real(10),dimension(ngauss),parameter::xx=(/-0.9602898565d0,&
-0.7966664774d0,-0.5255324099d0,-0.1834346425d0,&
0.1834346425d0,0.5255324099d0,0.7966664774d0,0.9602898565d0/)
real(10),Dimension(ngauss),parameter::ww=(/0.1012285363d0,&
0.2223810345d0,0.3137066459d0,0.3626837834d0,&
0.3626837834d0,0.3137066459d0,0.2223810345d0,0.1012285363d0/)
real(10),dimension(ngauss)::x,w,integrand
integer, parameter :: out_unit=1000
integer, parameter :: out_unit1=1001
integer, parameter :: out_unit2=1002, out_unit3=1003
real(10), parameter :: error=0.000001
real(10):: total_calka, division,tot_old,blad
real(10),parameter:: intrange=7.0
integer::j,irange
end module zmienne
The main program that uses the module:
program wykres
use zmienne
implicit none
open(unit=out_unit, file='wykresik.dat', action='write', status='replace')
open(unit=out_unit1, file='wykresik1.dat', action='write')
open(unit=out_unit2, file='wykresik2.dat', action='write')
open(out_unit3, file='wykresik3.dat', action='write')
! the gaussian points (xx) and weights (ww) are for the [-1,1] interval
! for [0,1] interval we have (vector instr.)
x=0.5d0*(xx+1.0d0)
w=0.5d0*ww
! plots
tempred = 1.0
beta=4.d0/tempred
call cpu_time(start)
do i=1,1000
r=float(i)*0.01
r6=(1.0/r)**6
u=beta*r6*(r6-1.0)
f=exp(-u/tempred)-1.0
write(out_unit,*) r, u
write(out_unit1,*)r, f
write(out_unit2,*)r, r*r*f
end do
call cpu_time(finish)
print '("Time = ",f6.3," seconds.")',finish-start
! end of plots
! integration 1
calka=0.0
r1=0.0
r2=0.5
do i=1,ngauss
r=(r2-r1)*x(i)+r1
r6=(1.0/r)**6
u=beta*r6*(r6-1.0d0)
! check for underflows
if (u>100.d0) then
f=-1.0d0
else
f=exp(-u)-1.d0
endif
! the array integrand is introduced in order to perform vector calculations below
integrand(i)=r*r*f
calka=calka+integrand(i)*w(i)
enddo
calka=calka*(r2-r1)
write(*,*)calka
! end of integration
! integration 2
calka=0.0
do i=1,ngauss
integrand(i)=inte(x(i),beta,r2,r1)
calka=calka+integrand(i)*w(i)
enddo
calka=calka*(r2-r1)
! end of integration 2
write(*,*)calka
! vector integration and analytical result
write(*,*)sum(integrand*w*(r2-r1)),-(0.5**3)/3.0
!**************************************************************
! tot_calka - the sum of integrals all integration ranges
! dividion the initial length of the integration intervals
! tot_old - we will compare the results fro two consecutive divisions.
! at the beginning we assume any big number
! blad - the difference between two consecutive integrations,
! at the beginning we assume any big number
! error - assumed precission, parameter, it is necassary for
! performing do-while loop
total_calka=0.0
division=0.5
tot_old=10000.0
blad=10000.0
do while (blad>error)
! intrange - the upper integration limit, it should be estimated
! analysing the plot of the Mayer function. Here - 7.
! irange = the number of subintegrals we have to calculate
irange=int(intrange/division)
total_calka=-(0.5**3)/3.0
! the analytical result for the integration range [0,0.5]
! the loop over all the intervals, for each of them we calculate
! lower and upper limits, r1 and r2
do j=1,irange
r1=0.5+(j-1)*division
r2=r1+division
calka=0.0
! the integral for a given interval
do i=1,ngauss
integrand(i)=inte(x(i),beta,r2,r1)
calka=calka+integrand(i)*w(i)
enddo
total_calka=total_calka+calka*(r2-r1)
enddo
! aux. output: number of subintervals, old and new integrals
write(*,*) irange,division,tot_old,total_calka
division=division/2.0
blad=abs(tot_old-total_calka)
tot_old=total_calka
! and the final error
write(*,*) blad
enddo
open(1,file='calka.dat', access='append')
! the secod viarial coefficient=CONSTANT*total_calka,
! CONSTANT is omitted here
write(1,*)tempred,total_calka
close(1)
end program wykres
I also made the external to this real function and it gives me an error for every variable in the module. It looks like that for example
undefined reference to `__zmienne_MOD_total_calka'
Inte is a real defined variable, which is necessary for me to calculate this integral.
integrand(i)=inte(x(i),beta,r2,r1)
Why it doesn't work when it's in another file, while it was working while its been inside it. That's weird
This is the original code:
program wykres
implicit none
real(10) :: r, u, r6, tempred, f, r2, r1, calka,beta
! beta - an auxiliary variable
real(10) :: inte
! inte - the function defined below
real :: start, finish
integer:: i
integer, parameter :: Ngauss = 8
real(10),dimension(ngauss),parameter::xx=(/-0.9602898565d0,&
-0.7966664774d0,-0.5255324099d0,-0.1834346425d0,&
0.1834346425d0,0.5255324099d0,0.7966664774d0,0.9602898565d0/)
real(10),Dimension(ngauss),parameter::ww=(/0.1012285363d0,&
0.2223810345d0,0.3137066459d0,0.3626837834d0,&
0.3626837834d0,0.3137066459d0,0.2223810345d0,0.1012285363d0/)
real(10),dimension(ngauss)::x,w,integrand
integer, parameter :: out_unit=1000
integer, parameter :: out_unit1=1001
integer, parameter :: out_unit2=1002, out_unit3=1003
real(10), parameter :: error=0.000001
real(10):: total_calka, division,tot_old,blad
real(10),parameter:: intrange=7.0
integer::j,irange
open(unit=out_unit, file='wykresik.dat', action='write', status='replace')
open(unit=out_unit1, file='wykresik1.dat', action='write')
open(unit=out_unit2, file='wykresik2.dat', action='write')
open(out_unit3, file='wykresik3.dat', action='write')
! the gaussian points (xx) and weights (ww) are for the [-1,1] interval
! for [0,1] interval we have (vector instr.)
x=0.5d0*(xx+1.0d0)
w=0.5d0*ww
! plots
tempred = 1.0
call cpu_time(start)
do i=1,1000
r=float(i)*0.01
r6=(1.0/r)**6
u=4.0d0*r6*(r6-1.0)
f=exp(-u/tempred)-1.0
write(out_unit,*) r, u
write(out_unit1,*)r, f
write(out_unit2,*)r, r*r*f
end do
call cpu_time(finish)
print '("Time = ",f6.3," seconds.")',finish-start
! end of plots
! integration 1
calka=0.0
r1=0.0
r2=0.5
! auxiliary variable
beta=4.d0/tempred
do i=1,ngauss
r=(r2-r1)*x(i)+r1
r6=(1.0/r)**6
u=beta*r6*(r6-1.0d0)
! check for underflows
if (u>100.d0) then
f=-1.0d0
else
f=exp(-u)-1.d0
endif
! the array integrand is introduced in order to perform vector calculations below
integrand(i)=r*r*f
calka=calka+integrand(i)*w(i)
enddo
calka=calka*(r2-r1)
write(*,*)calka
! end of integration
! integration 2
calka=0.0
do i=1,ngauss
integrand(i)=inte(x(i),beta,r2,r1)
calka=calka+integrand(i)*w(i)
enddo
calka=calka*(r2-r1)
! end of integration 2
write(*,*)calka
! vector integration and analytical result
write(*,*)sum(integrand*w*(r2-r1)),-(0.5**3)/3.0
!**************************************************************
! tot_calka - the sum of integrals all integration ranges
! dividion the initial length of the integration intervals
! tot_old - we will compare the results fro two consecutive divisions.
! at the beginning we assume any big number
! blad - the difference between two consecutive integrations,
! at the beginning we assume any big number
! error - assumed precission, parameter, it is necassary for
! performing do-while loop
total_calka=0.0
division=0.5
tot_old=10000.0
blad=10000.0
do while (blad>error)
! intrange - the upper integration limit, it should be estimated
! analysing the plot of the Mayer function. Here - 7.
! irange = the number of subintegrals we have to calculate
irange=int(intrange/division)
total_calka=-(0.5**3)/3.0
! the analytical result for the integration range [0,0.5]
! the loop over all the intervals, for each of them we calculate
! lower and upper limits, r1 and r2
do j=1,irange
r1=0.5+(j-1)*division
r2=r1+division
calka=0.0
! the integral for a given interval
do i=1,ngauss
integrand(i)=inte(x(i),beta,r2,r1)
calka=calka+integrand(i)*w(i)
enddo
total_calka=total_calka+calka*(r2-r1)
enddo
! aux. output: number of subintervals, old and new integrals
write(*,*) irange,division,tot_old,total_calka
division=division/2.0
blad=abs(tot_old-total_calka)
tot_old=total_calka
! and the final error
write(*,*) blad
enddo
open(1,file='calka.dat', access='append')
! the secod viarial coefficient=CONSTANT*total_calka,
! CONSTANT is omitted here
write(1,*)tempred,total_calka
close(1)
end program wykres
Jesus christ, there were a code below the end program... Thread may be closed now. Thank you to everyone.
real(kind=10) function inte(y,beta,r2,r1)
implicit none
real(kind=10)::r,beta,r6,r2,r1,u,y
r=(r2-r1)*y+r1
r6=(1.0/r)**6
u=beta*r6*(r6-1.0d0)
if (u>100.d0) then
inte=-1.0d0
else
inte=exp(-u)-1.d0
endif
inte=r*r*inte
end
is not just a real scalar variable of kind 10, whatever that kind means for your compiler. (For gfortran kind 10 is the x87 extended precision, for many other compilers it is invalid.)
When you then do
it makes no sense to index a scalar.
If
inte
was meant to be an external function returning a real of kind 10, you should declare it asor much better write a complete interface block for it.