First off, I don't know how to properly label my problem. This might also be the reason why I didn't find helpful resources. Any hints are highly appreciated.
trait Context[T]
{
self =>
trait Rule
{
def apply( value: T ): Boolean
}
implicit class RichRule[A <: Rule]( a: A )
{
def and[B <: Rule]( b: B ): and[A, B] = self.and( a, b )
def or[B <: Rule]( b: B ): or[A, B] = self.or( a, b )
}
sealed trait Group[A <: Rule, B <: Rule] extends Rule
{
def a: A
def b: B
override def apply( value: T ) = ???
}
case class and[A <: Rule, B <: Rule]( a: A, b: B ) extends Group[A, B]
case class or[A <: Rule, B <: Rule]( a: A, b: B ) extends Group[A, B]
}
Given the above code, I can now define and chain Ruless in this fashion:
new Context[String]
{
class MyRule extends Rule
{
override def apply( value: String ) = true
}
case class A() extends MyRule
case class B() extends MyRule
val x1: A and B or A = A() and B() or A()
}
This works as I intended but now comes the tricky part. I want to introduce a Type Class Combination that explains how to join two rules.
trait Combination[-A <: Rule, -B <: Rule]
{
type Result <: Rule
def combine( a: A, b: B ): Result
}
trait AndCombination[-A <: Rule, -B <: Rule] extends Combination[A, B]
trait OrCombination[-A <: Rule, -B <: Rule] extends Combination[A, B]
This Type Class should now be passed with the operators.
implicit class RichRule[A <: Rule]( a: A )
{
def and[B <: Rule]( b: B )( implicit c: AndCombination[A, B] ): and[A, B] = ???
def or[B <: Rule]( b: B )( implicit c: OrCombination[A, B] ): or[A, B] = self.or( a, b )
}
Which is still working after some tweaks.
implicit val c1 = new Combination[MyRule, MyRule]
{
type Result = MyRule
def combine( a: A, b: B ): MyRule = a
}
val x: A and B = A() and B()
But if it gets more complicated, things are falling apart.
A() and B() and A()
Will raise an implicit missing error: Combination[and[A, B], A] is missing. But I want it to use the result of the implicit combination of and[A, B] (type Result = MyRule) which it already knows how to handle (Combination[and[A, B]#Result, A]).
It is important for me to keep the type information of combined rules val x: A and B or A, folding them together to a final result type is easy, but not what I want.
This is as close as I could get, it fails compilation, though.
trait Context[T]
{
self =>
trait Rule
trait Value extends Rule
trait Group[A <: Rule, B <: Rule] extends Rule
{
def a: A
def b: B
implicit val resolver: Resolver[_ <: Group[A, B]]
}
case class and[A <: Rule, B <: Rule]( a: A, b: B )( implicit val resolver: Resolver[and[A, B]] ) extends Group[A, B]
implicit class RichRule[A <: Rule]( a: A )
{
def and[B <: Rule]( b: B )( implicit resolver: Resolver[and[A, B]] ) = self.and[A, B]( a, b )
}
trait Resolver[-A <: Rule]
{
type R <: Value
def resolve( a: A ): R
}
}
object O extends Context[String]
{
implicit val c1 = new Resolver[A and A]
{
override type R = A
override def resolve( a: O.and[A, A] ) = ???
}
implicit def c2[A <: Value, B <: Value, C <: Value]( implicit r1: Resolver[A and B] ) = new Resolver[A and B and C]
{
override type R = C
override def resolve( a: A and B and C ): C =
{
val x: r1.R = r1.resolve( a.a )
new c2( x )
???
}
}
class c2[A <: Value, B <: Value]( val a: A )( implicit r2: Resolver[A and B] ) extends Resolver[A and B]
{
override type R = B
override def resolve( a: O.and[A, B] ) = a.b
}
case class A() extends Value
val x: A and A and A = A() and A() and A()
}
The reason while your code can't compile is that at the instruction
The compiler need to resolve a
implicit r2: Resolver[A and B]fromxand the only type information available is the type ofx, which isr1.R.This sort of problems requires making more type information available to the compiler and adding some implicit parameter. When you require a
Resolver[A and B], you can't use itsRtype to resolve anotherResolver[r1.R and C].With this available, you can rewrite the signature of your c2
Notice that by using the type alias and introducing an additional generic parameter, I can express the relation
r1.R1 = Dwhich is then used to resolve the second implicit r2