Please give me some idea as to how to go about this
Draw a Turing machine (using Sipser notation) having at least 4 nontrivial (i.e., nonrejecting) states and at least six nontrivial (i.e., not to the rejecting state) transitions.
Please give me some idea as to how to go about this
Draw a Turing machine (using Sipser notation) having at least 4 nontrivial (i.e., nonrejecting) states and at least six nontrivial (i.e., not to the rejecting state) transitions.
A Turing machine has:
The machine also has an infinite tape that is divided into cells. In each cell, there can be a symbol from the tape alphabet. The symbols that initially are on the tape are called the input to the machine. The machine has a read head that is always located over one of the cells. Let's say you have a transition arrow from state A to state B, with the symbols a, b, and R on it. That means: "If the machine is in state A and the symbol under the tape head is a, then we should replace that symbol with b, go to state B, and move the read head one cell to the right."