I have just finished writing "version 0" of my first (toy) transpiler. It works. It turns a string of "pseudo JavaScript" (JavaScript with an additional feature) into a string of runnable JavaScript. Now, I want to improve it.
The work area possibly most interesting for other SO users is this: The compiled code (i.e., output of my transpiler) does not heed a coding style recommendation as given in an accepted answer to some earlier SO question. If I would have at my hands a second transpiler where that coding style recommendation is heeded, I could make an informed decision regarding which branch is more promising to continue to develop on - I'd like to compare the 2 braches regarding performance, development time needed, amount of bugs, and so on, and decide based on that.
Let me tell you about the "additional JS feature" my transpiler deals with: "nested return". Consider closures / nested functions like so
function myOuterFunc(){
... code ...
function innerFunc(){
... code ...
}
... code ...
}
(note that above '...code...' is supposed to include every possible JS code including more nested function declarations, so myOuterFunc
is not necessarily the direct parent of innerFunc
)
In above situation, suppose you desire to return a result from myOuterFunc
from somewhere inside - not necessarily directly inside - innerFunc
With "nested return" implemented, you could then write simply
return.myOuterFunc result
Here is an exmalpe of a (not-runnable) function using this feature and doing something meaningful
function multiDimensionalFind(isNeedle, haystack) {
// haystack is an array of arrays
// loop (recursively) through all ways of picking one element from each array in haystack
// feed the picked elements as array to isNeedle and return immediately when isNeedle gives true
// with those picked elements being the result, i.e. the 'found needle'
var LEVEL = haystack.length;
function inner(stack) {
var level = stack.length;
if (level >= LEVEL) {
if (isNeedle(stack)) return.multiDimensionalFind stack;
} else {
var arr = haystack[level];
for (var i = 0; i < arr.length; i++) {
inner(stack.concat([arr[i]]));
}
}
}
inner([]);
return 'not found'
}
And here is the (runnable) code my transpiler automatically produces from that (comments were added/remove later, obviously), followed by some code testing if that function does what it claims to do (and it does, as you can convince yourself.)
///////////// the function /////////////////
function multiDimensionalFind(isNeedle, haystack) {
try {
var LEVEL = haystack.length;
function inner(stack) {
var level = stack.length;
if (level >= LEVEL) {
if (isNeedle(stack)) throw stack;
} else {
var arr = haystack[level];
for (var i = 0; i < arr.length; i++) {
inner(stack.concat([arr[i]]));
}
}
}
inner([]);
return 'not found'
} catch(e){
// make sure "genuine" errors don't get destroyed or mishandled
if (e instanceof Error) throw e; else return e;
}
}
////////////////// test it //////////////////
content = document.getElementById('content');
function log2console(){
var digits = [0,1];
var haystack = [digits,digits,digits,digits,digits];
var str = '';
function isNeedle(stack){
str = str + ', ' + stack.join('')
return false;
}
multiDimensionalFind(isNeedle, haystack);
content.textContent = str;
}
function find71529(){ // second button
var digits = [0,1,2,3,4,5,6,7,8,9]
var haystack = [digits,digits,digits,digits,digits]
function isNeedle(stack){
return stack.reduce(function(b,i){ return 10*b+i; }, 0) === 71529
// returns true iff the stack contains [7,1,5,2,9]
}
content.textContent = multiDimensionalFind(
isNeedle, haystack
).join('_')
}
<button onclick='log2console()'>print binary numbers with 5 digits</button>
<br>
<button onclick='find71529()'>find something is 5d space</button>
<div id='content'></div>
You can play around with my transpiler in this fiddle here. I'm using the esprima library, the escodegen.js library on top of esprima, a teeny tiny work in progress abstract syntax tree generation library of my own (see the script tags in the fiddle). The code which is not library, and not UI code, i.e. the "real meat" of the transpiler has less than 100 lines (see function transpile
). So this might be a lot less complicated than you thought.
I can't remember where I had seen the style recommendation, but I am certain that it was actually in multiple places. If you know or come across one such question, I invite you to be so kind to put the link into a comment under the question, I will mark useful. So far, there is one link, thank you Barmar.
You might ask why I even bothered to write a "non-compliant" transpiler first, and did not go for the "compliant" version straight away. That has to do with the estimated amount of work. I estimate the amount of work to be much larger for the "compliant" version. So much so, that it didn't really seem worthwhile to embark on such an endeavor. I would very much like to know whether this assessment of the amount of work is correct or incorrect. Thus the question. Please do not insinuate a rhetorical, or even a dishonest motive for the question; however weird it might sound to some, it really is the case that I'd like to be proven wrong, so please be so kind not to assume I'm "just saying that" for whatever reason, you'd be doing me an injustice. This is, of all the questions I asked on SO so far, by far the one I've put the most work into. And, if you ask me, it is by far the best question I have ever asked here.
Apart from someone assisting me in writing the "compliant" version of the transpiler, I'm also interested (albeit to a lesser degree) in anything objectively demonstrable which stands a chance to convince me that the "non-compliant" way is the wrong way. Speed tests (with links to jsperf), reproducible bug reports, things of that sort.
I should mention the speed tests I have done myself so far:
The better way really is to use
return
(if you can't completely refactor the tower). It makes it clear what you're doing and when you're returning a value from the intermediate functions; you can tell by looking at those functions where the result may be provided. In contrast, usingthrow
is invisible in those intermediate layers; it magically bypassing them in a way designed for error conditions.If you don't want to do that, I don't think you have a reasonable alternative other than
throw
. I wondered about going down the route of generator functions or similar, but I think that would just complicate things more, not less.Using
return
doesn't markedly complicate the example code, and does (to my eye) make it clearer what's going on and when results are potentially expected.(In the above,
result
is tested for truthiness; substitute something else if appropriate.)