I am trying to implement a function in my algorithm which allows me to resume training from a checkpoint. The problem is that when I resume training, my loss explodes by many orders of magnitude, from the order to 0.001 to 1000. I suspect that the problem may be that when training is resumed, the learning rate is not being set properly.
Here is my training function:
def train_gray(epoch, data_loader, device, model, criterion, optimizer, i, path):
train_loss = 0.0
for data in data_loader:
img, _ = data
img = img.to(device)
stand_dev = 0.0392
noisy_img = add_noise(img, stand_dev, device)
output = model(noisy_img, stand_dev)
output = output[:,0:1,:,:]
loss = criterion(output, img)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss += loss.item()*img.size(0)
train_loss = train_loss/len(data_loader)
print('Epoch: {} Complete \tTraining Loss: {:.6f}'.format(
epoch,
train_loss
))
return train_loss
And here is my main function that initialises my variables, loads a checkpoint, calls my training function, and saves a checkpoint after an epoch of training:
def main():
now = datetime.now()
current_time = now.strftime("%H_%M_%S")
path = "/home/bledc/my_remote_folder/denoiser/models/{}_sigma_10_session2".format(current_time)
os.mkdir(path)
width = 256
# height = 256
num_epochs = 25
batch_size = 4
learning_rate = 0.0001
data_loader = load_dataset(batch_size, width)
model = UNetWithResnet50Encoder().to(device)
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(
model.parameters(), lr=learning_rate, weight_decay=1e-5)
############################################################################################
# UNCOMMENT CODE BELOW TO RESUME TRAINING FROM A MODEL
model_path = "/home/bledc/my_remote_folder/denoiser/models/resnet_sigma_10/model_epoch_10.pt"
save_point = torch.load(model_path)
model.load_state_dict(save_point['model_state_dict'])
optimizer.load_state_dict(save_point['optimizer_state_dict'])
epoch = save_point['epoch']
train_loss = save_point['train_loss']
model.train()
############################################################################################
for i in range(epoch, num_epochs+1):
train_loss = train_gray(i, data_loader, device, model, criterion, optimizer, i, path)
checkpoint(i, train_loss, model, optimizer, path)
print("end")
Lastly, here is my function to save checkpoints:
def checkpoint(epoch, train_loss, model, optimizer, path):
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'train_loss': train_loss
}, path+"/model_epoch_{}.pt".format(epoch))
print("Epoch saved")
If my problem is that I am not saving my learning rate, how would I do this?
Any help would be greatly appreciated, Clement
Update: I'm fairly certain that the problem lies in my pretrained model. I am saving the optimiser every epoch but the optimiser only holds information for the trainable layers. I hope to solve this soon and post a more thorough answer when I figure out who to save and load the entire model.