I'm trying to define a time step for the physics simulation in a PhysX application, such that the physics will run at the same speed on all machines. I wish for the physics to update at 60FPS, so each update should have a delta time of 1/60th of a second.
My application must use GLUT. Currently, my loop is set up as follows.
Idle Function:
void GLUTGame::Idle()
{
newElapsedTime = glutGet(GLUT_ELAPSED_TIME);
deltaTime = newElapsedTime - lastElapsedTime;
lastElapsedTime = newElapsedTime;
glutPostRedisplay();
}
The frame rate does not really matter in this case - it's only the speed at which my physics update that actually matters.
My render function contains the following:
void GLUTGame::Render()
{
// Rendering Code
simTimer += deltaTime;
if (simTimer > m_fps)
{
m_scene->UpdatePhys(m_fps);
simTimer = 0;
}
}
Where:
Fl32 m_fps = 1.f/60.f
However, this results in some very slow updates, due to the fact that deltaTime appears to equal 0 on most loops (which shouldn't actually be possible...) I've tried moving my deltaTime calculations to the bottom of my rendering function, as I thought that maybe the idle callback was called too often, but this did not solve the issue. Any ideas what I'm doing wrong here?
From the OpenGL website, we find that
glutGet(GLUT_ELAPSED_TIME)
returns the number of passed milliseconds as an int. So, if you call yourvoid GLUTGame::Idle()
method about 2000 times per second, then the time passed after one such call is about 1000 * 1/2000 = 0.5 ms. Thus more than 2000 calls per second to voidGLUTGame::Idle()
results inglutGet(GLUT_ELAPSED_TIME)
returning 0 due to integer rounding.