The rvec (rotation vector) is inaccurate when using Aruco and cv2.solvePnP to estimate the pose

66 views Asked by At

I want to estimate the pose of the robot (camera) through ArUco code. When only one ArUco code is used, the long-distance angle estimation fluctuates greatly, so we choose to use two ArUco codes, as shown in the figure. This is a image of a real scene, but the non-critical content has been erased. The current ArUco codes are about 30m away from the camera. scene with two markers

The size of each code is 0.6m x 0.6m. Place them on the same plane (at least I think they are coplanar). Taking the center of ArUco on the left as the center of the world coordinates, the world coordinates of each corner point are known. The world coordinates of the ArUco code on the right are obtained by measurement.

Use cv2.aruco.ArucoDetector to detect the corners of two ArUco codes, a total of 8 corners, and estimate the pose through the following function.

# world_points.shape=(8,3), pixel_points.shape=(8,2)
_, rvec, tvec = cv2.solvePnP(world_points, pixel_points, K, distor, flags=cv2.SOLVEPNP_SQPNP)

The trajectory of the camera should be similar to the picture below, an arc. expected camera trajectory

But the actual calculated trajectory is as shown in the figure below, which is more like a straight line without arc. actual camera trajectory

There is a high probability that the estimated rvec is inaccurate, because when I use other sensors to obtain yaw and the tvec calculated here, the trajectory of the camera drawn is more accurate.

  1. Is it possible for cv2.solvePnP to get a relatively accurate tvec, but an inaccurate rvec?
  2. Why is the rvec obtained by cv2.solvePnP inaccurate? For my scenario.
  3. Is there any way to solve this problem?

I want to improve the accuracy of the rvec.

0

There are 0 answers