tensorflow keras savedmodel lost inputs name and add unknow inputs

782 views Asked by At

I'm currently implement the sequantial deep matching model (https://arxiv.org/abs/1909.00385) using tensorflow 2.3. And I included the preprocessing layer as part of the model via subclassing keras.layers.Layer.

The preprocessing part of code is listed below

class Preprocessing(keras.layers.Layer):

    def __init__(self, str_columns, hash_bins, float_columns, float_buckets, embedding_dim, user_columns, short_seq_columns, prefer_seq_columns, item_key_feats,
                 item_key_hash_bucket_size, series_feats, series_feats_hash_bucket_size, deviceid_num, device_list, **kwargs):
        super(Preprocessing, self).__init__(**kwargs)
        self.str_columns = str_columns
        self.hash_bins = hash_bins
        self.float_columns = float_columns
        self.float_buckets = float_buckets
        self.embedding_dim = embedding_dim
        self.user_columns = user_columns
        self.short_seq_columns = short_seq_columns
        self.prefer_seq_columns = prefer_seq_columns
        self.item_key_feats = item_key_feats
        self.item_key_hash_bucket_size = item_key_hash_bucket_size
        self.series_feats = series_feats
        self.series_feats_hash_bucket_size = series_feats_hash_bucket_size
        self.deviceid_num = deviceid_num
        self.device_list = device_list

        self.user_outputs = {}
        self.short_outputs = {}
        self.prefer_outputs = {}

        deviceid_lookup = keras.layers.experimental.preprocessing.StringLookup(vocabulary=device_list, mask_token=None, oov_token="-1")
        deviceid_embedding = keras.layers.Embedding(input_dim=deviceid_num, output_dim=embedding_dim)

        item_key_hashing = keras.layers.experimental.preprocessing.Hashing(num_bins=item_key_hash_bucket_size)
        item_key_embedding = keras.layers.Embedding(input_dim=item_key_hash_bucket_size, output_dim=embedding_dim)

        series_hashing = keras.layers.experimental.preprocessing.Hashing(num_bins=series_feats_hash_bucket_size)
        series_embedding = keras.layers.Embedding(input_dim=series_feats_hash_bucket_size, output_dim=embedding_dim)

        for i in str_columns:
            if i == "device_id":
                process = [deviceid_lookup, deviceid_embedding]
            elif i in item_key_feats:
                process = [item_key_hashing, item_key_embedding]
            elif i in series_feats:
                process = [series_hashing, series_embedding]
            else:
                hashing = keras.layers.experimental.preprocessing.Hashing(num_bins=hash_bins[i])
                embedding = keras.layers.Embedding(input_dim=hash_bins[i], output_dim=embedding_dim)
                process = [hashing, embedding]
            if i in user_columns:
                self.user_outputs[i] = process
            if i in short_seq_columns:
                self.short_outputs[i] = process
            if i in prefer_seq_columns:
                self.prefer_outputs[i] = process

        for l in float_columns:
            discrete = keras.layers.experimental.preprocessing.Discretization(bins=float_buckets[l])
            embedding = keras.layers.Embedding(input_dim=len(float_buckets[l]) + 1, output_dim=embedding_dim)
            if l in user_columns:
                self.user_outputs[l] = [discrete, embedding]
            if l in short_seq_columns:
                self.short_outputs[l] = [discrete, embedding]
            if l in prefer_seq_columns:
                self.prefer_outputs[l] = [discrete, embedding]

    @staticmethod
    def get_embedding(input_tmp, name, embed_dict):
        func = embed_dict[name]
        if len(func) < 2:
            print(func)
            raise Exception('Not enough function to retrieve embedding')
        output = func[0](input_tmp)
        output = func[1](output)
        return output

    def call(self, inputs):
        user_embedding = tf.concat([tf.reduce_mean(self.get_embedding(inputs[i], i, self.user_outputs), axis=[1, 2]) for i in self.user_columns], axis=-1)
        short_embedding = tf.concat([tf.squeeze(self.get_embedding(inputs[l], l, self.short_outputs), axis=1).to_tensor() for l in self.short_seq_columns], axis=-1)
        prefer_embedding = {k: tf.squeeze(self.get_embedding(inputs[k], k, self.prefer_outputs).to_tensor(), axis=1) for k in self.prefer_seq_columns}
        return user_embedding, short_embedding, prefer_embedding

And also my input code:

def read_row(csv_row):
    record_defaults = [[0.]] * numeric_feature_size + [['']] * category_feature_size + [['0-0']] + [['0']]
    row = tf.io.decode_csv(csv_row, record_defaults=record_defaults, field_delim='', use_quote_delim=False)
    features = []
    for i, feature in enumerate(row):
        if i < numeric_feature_size:
            features.append(feature)
        elif i < numeric_feature_size + category_feature_size:
            tmp_tf = tf.strings.split([feature], ";")
            features.append(tmp_tf)
    res = OrderedDict(zip(numeric_columns + category_columns, features))
    res['target'] = [tf.cast(row[-2], tf.string)]
    return res

The other part of code is not giving here, cause I believe it's right, and might be too much to list here. The model is working correctly during training using model.compile then model.fit, however, after I saved it with model.save(path), the resulting Graph gets many unknown inputs and none of the inputs name is saved.

saved_model_cli show --dir ./ --tag_set serve --signature_def serving_default

The given SavedModel SignatureDef contains the following input(s):
  inputs['args_0'] tensor_info:
      dtype: DT_STRING
      shape: (-1)
      name: serving_default_args_0:0
  inputs['args_0_1'] tensor_info:
      dtype: DT_INT64
      shape: (-1)
      name: serving_default_args_0_1:0
  inputs['args_0_10'] tensor_info:
      dtype: DT_INT64
      shape: (-1)
      name: serving_default_args_0_10:0
  inputs['args_0_11'] tensor_info:
      dtype: DT_INT64
      shape: (-1)
      name: serving_default_args_0_11:0
  inputs['args_0_12'] tensor_info:
      dtype: DT_STRING
      shape: (-1)
      name: serving_default_args_0_12:0
  inputs['args_0_13'] tensor_info:
      dtype: DT_INT64
      shape: (-1)
      name: serving_default_args_0_13:0
  inputs['args_0_14'] tensor_info:
      dtype: DT_INT64
      shape: (-1)
      name: serving_default_args_0_14:0
  inputs['args_0_15'] tensor_info:
      dtype: DT_STRING
      shape: (-1)
      name: serving_default_args_0_15:0
  inputs['args_0_16'] tensor_info:
      dtype: DT_INT64
      shape: (-1)
      name: serving_default_args_0_16:0
  inputs['args_0_17'] tensor_info:
      dtype: DT_INT64
      shape: (-1)
      name: serving_default_args_0_17:0
  inputs['args_0_18'] tensor_info:
      dtype: DT_STRING
      shape: (-1)
      name: serving_default_args_0_18:0
  inputs['args_0_19'] tensor_info:
      dtype: DT_INT64
      shape: (-1)
      name: serving_default_args_0_19:0
  inputs['args_0_2'] tensor_info:
      dtype: DT_INT64
      shape: (-1)
      name: serving_default_args_0_2:0
  inputs['args_0_20'] tensor_info:
      dtype: DT_INT64
      shape: (-1)
      name: serving_default_args_0_20:0
  inputs['args_0_21'] tensor_info:
      dtype: DT_STRING
      shape: (-1)
      name: serving_default_args_0_21:0
  inputs['args_0_22'] tensor_info:
      dtype: DT_INT64
      shape: (-1)
      name: serving_default_args_0_22:0
  inputs['args_0_23'] tensor_info:
      dtype: DT_INT64
      shape: (-1)
      name: serving_default_args_0_23:0
  inputs['args_0_24'] tensor_info:
      dtype: DT_STRING
      shape: (-1)
      name: serving_default_args_0_24:0
  inputs['args_0_25'] tensor_info:
      dtype: DT_INT64
      shape: (-1)
      name: serving_default_args_0_25:0
  inputs['args_0_26'] tensor_info:
      dtype: DT_INT64
      shape: (-1)
      name: serving_default_args_0_26:0
  inputs['args_0_27'] tensor_info:
      dtype: DT_STRING
      shape: (-1)
      name: serving_default_args_0_27:0
  inputs['args_0_28'] tensor_info:
      dtype: DT_INT64
      shape: (-1)
      name: serving_default_args_0_28:0
  inputs['args_0_29'] tensor_info:
      dtype: DT_INT64
      shape: (-1)
      name: serving_default_args_0_29:0
  inputs['args_0_3'] tensor_info:
      dtype: DT_STRING
      shape: (-1)
      name: serving_default_args_0_3:0
  inputs['args_0_30'] tensor_info:
      dtype: DT_STRING
      shape: (-1)
      name: serving_default_args_0_30:0
  inputs['args_0_31'] tensor_info:
      dtype: DT_INT64
      shape: (-1)
      name: serving_default_args_0_31:0
  inputs['args_0_32'] tensor_info:
      dtype: DT_INT64
      shape: (-1)
      name: serving_default_args_0_32:0
  inputs['args_0_33'] tensor_info:
      dtype: DT_STRING
      shape: (-1)
      name: serving_default_args_0_33:0
  inputs['args_0_34'] tensor_info:
      dtype: DT_INT64
      shape: (-1)
      name: serving_default_args_0_34:0
  inputs['args_0_35'] tensor_info:
      dtype: DT_INT64
      shape: (-1)
      name: serving_default_args_0_35:0
  inputs['args_0_36'] tensor_info:
      dtype: DT_STRING
      shape: (-1)
      name: serving_default_args_0_36:0
  inputs['args_0_37'] tensor_info:
      dtype: DT_INT64
      shape: (-1)
      name: serving_default_args_0_37:0
  inputs['args_0_38'] tensor_info:
      dtype: DT_INT64
      shape: (-1)
      name: serving_default_args_0_38:0
  inputs['args_0_39'] tensor_info:
      dtype: DT_STRING
      shape: (-1)
      name: serving_default_args_0_39:0
  inputs['args_0_4'] tensor_info:
      dtype: DT_INT64
      shape: (-1)
      name: serving_default_args_0_4:0
  inputs['args_0_40'] tensor_info:
      dtype: DT_INT64
      shape: (-1)
      name: serving_default_args_0_40:0
  inputs['args_0_41'] tensor_info:
      dtype: DT_INT64
      shape: (-1)
      name: serving_default_args_0_41:0
  inputs['args_0_42'] tensor_info:
      dtype: DT_STRING
      shape: (-1)
      name: serving_default_args_0_42:0
  inputs['args_0_43'] tensor_info:
      dtype: DT_INT64
      shape: (-1)
      name: serving_default_args_0_43:0
  inputs['args_0_44'] tensor_info:
      dtype: DT_INT64
      shape: (-1)
      name: serving_default_args_0_44:0
  inputs['args_0_45'] tensor_info:
      dtype: DT_STRING
      shape: (-1)
      name: serving_default_args_0_45:0
  inputs['args_0_46'] tensor_info:
      dtype: DT_INT64
      shape: (-1)
      name: serving_default_args_0_46:0
  inputs['args_0_47'] tensor_info:
      dtype: DT_INT64
      shape: (-1)
      name: serving_default_args_0_47:0
  inputs['args_0_48'] tensor_info:
      dtype: DT_STRING
      shape: (-1)
      name: serving_default_args_0_48:0
  inputs['args_0_49'] tensor_info:
      dtype: DT_INT64
      shape: (-1)
      name: serving_default_args_0_49:0
  inputs['args_0_5'] tensor_info:
      dtype: DT_INT64
      shape: (-1)
      name: serving_default_args_0_5:0
  inputs['args_0_50'] tensor_info:
      dtype: DT_INT64
      shape: (-1)
      name: serving_default_args_0_50:0
  inputs['args_0_6'] tensor_info:
      dtype: DT_STRING
      shape: (-1)
      name: serving_default_args_0_6:0
  inputs['args_0_7'] tensor_info:
      dtype: DT_INT64
      shape: (-1)
      name: serving_default_args_0_7:0
  inputs['args_0_8'] tensor_info:
      dtype: DT_INT64
      shape: (-1)
      name: serving_default_args_0_8:0
  inputs['args_0_9'] tensor_info:
      dtype: DT_STRING
      shape: (-1)
      name: serving_default_args_0_9:0
The given SavedModel SignatureDef contains the following output(s):
  outputs['output_1'] tensor_info:
      dtype: DT_FLOAT
      shape: (-1, 64)
      name: StatefulPartitionedCall:0

In this model, I only used the categorical features with dtype as tf.string, so all the inputs with dtype of DT_INT64 is not part of my model inputs.

Can anyone help me with this?

2

There are 2 answers

0
Feng Zhou On BEST ANSWER

I finally got this work.

The error came from my tf.io.decode_csv method. tf.strings.split()will return a RaggedTensor by default, which will also contain two int variables. That's why the input signatures contains 17 string type and 34 int type. The RaggedTensor will also harm the keras serialization, which is why all of the input names were missing. I transformed all the RaggedTensor to EagerTensor, and all things worked.

However, that's not the only error I've encountered when I tried to load the model.

I also encountered The same saveable will be restored with two names error, which cost me tons of time to resolved it. And it turns out to be as bug of keras.layers.experimental.preprocessing module, the same function in it cannot be used twice, cause variables will be recorded as the same name, and result in a non-loadable savedmodel.

3
Jirayu Kaewprateep On

It is easy, I test with multiple ways and found name is the most significant thing that happen.

The custom class and RNN with lstm cell are not working, I spend time testing also that takes a lot of time because tracing on and RNN .

[ Sample ]:

"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
: Model Initialize
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
model = tf.keras.models.Sequential([
    tf.keras.layers.InputLayer(input_shape=( 32, 32, 3 ), batch_size=1, name='layer_input'),
    tf.keras.layers.Normalization(mean=3., variance=2., name='layer_normalize_1'),
    tf.keras.layers.Normalization(mean=4., variance=6., name='layer_normalize_2'),
    tf.keras.layers.Conv2DTranspose(2, 3, activation='relu', padding="same", name='layer_conv2dT_1'),
    tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(1, 1), padding='valid', name='layer_maxpool_1'),
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(4 * 256, name='layer_dense_1'),   
    tf.keras.layers.Reshape((4 * 256, 1)),

    tf.keras.layers.LSTM(128, name='layer_4', return_sequences=True, return_state=False),
    tf.keras.layers.LSTM(128, name='layer_5'),

    tf.keras.layers.Dropout(0.2),
])

model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(64, activation='relu', name='layer_dense_2'))
model.add(tf.keras.layers.Dense(7, name='layer_dense_3'))
model.summary()

# Loads the weights
if exists(target_saved_model) :
    model = load_model(target_saved_model)
    print("model load: " + target_saved_model)
    input("Press Any Key!")

"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
: Training
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
history = model.fit(x_train, y_train, epochs=10, batch_size=1 ,validation_data=(x_test, y_test))
model.save(target_saved_model)
print('.................')

[ Output ]: 1. Error messages from layer lstm

Epoch 10/10
20/20 [==============================] - 1s 71ms/step - loss: 0.7332 - val_loss: 0.8078
2022-04-06 23:23:26.017439: W tensorflow/python/util/util.cc:368] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.
WARNING:absl:Found untraced functions such as lstm_cell_layer_call_fn, lstm_cell_layer_call_and_return_conditional_losses, lstm_cell_1_layer_call_fn, lstm_cell_1_layer_call_and_return_conditional_losses while saving (showing 4 of 4). These functions will not be directly callable after loading.
WARNING:absl:<keras.layers.recurrent.LSTMCell object at 0x00000145F1C83130> has the same name 'LSTMCell' as a built-in Keras object. Consider renaming <class 'keras.layers.recurrent.LSTMCell'> to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.
WARNING:absl:<keras.layers.recurrent.LSTMCell object at 0x00000145F1C83C10> has the same name 'LSTMCell' as a built-in Keras object. Consider renaming <class 'keras.layers.recurrent.LSTMCell'> to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.
...

[ Output 2 ]: 2. Error message removed

Epoch 10/10
100/100 [==============================] - 6s 63ms/step - loss: 0.3954 - val_loss: 0.5108
.................
...