the data that i wanna encode looks as follows:
print (train['labels'])
[ 0 0 0 ..., 42 42 42]
there are 43 classes going from 0-42
Now i read that tensorflow in version 0.8 has a new feature for one hot encoding so i tried to use it as following:
trainhot=tf.one_hot(train['labels'], 43, on_value=1, off_value=0)
only problem is that i think the output is not what i need
print (trainhot[1])
Tensor("strided_slice:0", shape=(43,), dtype=int32)
Can someone nudge me in the right direction please :)
The output is correct and expected. trainhot[1] is the label of the second (0-based index) training sample, which is of 1D shape (43,). You can play with the code below to better understand tf.one_hot: